8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving the electrical properties of graphene layers by chemical doping

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the electronic properties of graphene layers can be modulated by various doping techniques, most of doping methods cost degradation of structural uniqueness or electrical mobility. It is matter of huge concern to develop a technique to improve the electrical properties of graphene while sustaining its superior properties. Here, we report the modification of electrical properties of single- bi- and trilayer graphene by chemical reaction with potassium nitrate (KNO 3) solution. Raman spectroscopy and electrical transport measurements showed the n-doping effect of graphene by KNO 3. The effect was most dominant in single layer graphene, and the mobility of single layer graphene was improved by the factor of more than 3. The chemical doping by using KNO 3 provides a facile approach to improve the electrical properties of graphene layers sustaining their unique characteristics.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interpretation of Raman spectra of disordered and amorphous carbon

            Physical Review B, 61(20), 14095-14107
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Raman Fingerprint of Graphene

              Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene's electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area.
                Bookmark

                Author and article information

                Journal
                Sci Technol Adv Mater
                Sci Technol Adv Mater
                TSTA
                Science and Technology of Advanced Materials
                Taylor & Francis
                1468-6996
                1878-5514
                October 2014
                8 September 2014
                : 15
                : 5
                : 055004
                Affiliations
                Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Korea
                Author notes
                Article
                TSTA11661211
                10.1088/1468-6996/15/5/055004
                5099677
                ecc0e82e-c814-4e83-943f-63d0a73f3ffa
                © 2014 National Institute for Materials Science

                Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

                History
                : 07 April 2014
                : 24 August 2014
                Categories
                Papers

                graphene,potassium nitrate,chemical doping,electrical properties,raman spectroscopy

                Comments

                Comment on this article