18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Advances in understanding mechanisms underpinning lithium–air batteries

      , , ,
      Nature Energy
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references71

          • Record: found
          • Abstract: not found
          • Article: not found

          Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Review of Solid Electrolyte Interphases on Lithium Metal Anode

            Lithium metal batteries (LMBs) are among the most promising candidates of high‐energy‐density devices for advanced energy storage. However, the growth of dendrites greatly hinders the practical applications of LMBs in portable electronics and electric vehicles. Constructing stable and efficient solid electrolyte interphase (SEI) is among the most effective strategies to inhibit the dendrite growth and thus to achieve a superior cycling performance. In this review, the mechanisms of SEI formation and models of SEI structure are briefly summarized. The analysis methods to probe the surface chemistry, surface morphology, electrochemical property, dynamic characteristics of SEI layer are emphasized. The critical factors affecting the SEI formation, such as electrolyte component, temperature, current density, are comprehensively debated. The efficient methods to modify SEI layer with the introduction of new electrolyte system and additives, ex‐situ‐formed protective layer, as well as electrode design, are summarized. Although these works afford new insights into SEI research, robust and precise routes for SEI modification with well‐designed structure, as well as understanding of the connection between structure and electrochemical performance, is still inadequate. A multidisciplinary approach is highly required to enable the formation of robust SEI for highly efficient energy storage systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rechargeable LI2O2 electrode for lithium batteries.

              Rechargeable lithium batteries represent one of the most important developments in energy storage for 100 years, with the potential to address the key problem of global warming. However, their ability to store energy is limited by the quantity of lithium that may be removed from and reinserted into the positive intercalation electrode, Li(x)CoO(2), 0.5 < x < 1 (corresponding to 140 mA.h g(-1) of charge storage). Abandoning the intercalation electrode and allowing Li to react directly with O(2) from the air at a porous electrode increases the theoretical charge storage by a remarkable 5-10 times! Here we demonstrate two essential prerequisites for the successful operation of a rechargeable Li/O(2) battery; that the Li(2)O(2) formed on discharging such an O(2) electrode is decomposed to Li and O(2) on charging (shown here by in situ mass spectrometry), with or without a catalyst, and that charge/discharge cycling is sustainable for many cycles.
                Bookmark

                Author and article information

                Journal
                Nature Energy
                Nat. Energy
                Springer Nature
                2058-7546
                September 8 2016
                September 8 2016
                : 1
                : 9
                : 16128
                Article
                10.1038/nenergy.2016.128
                ecd89666-b1a7-4f58-9329-bfac42e23cc0
                © 2016
                History

                Comments

                Comment on this article