12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ceftolozane/tazobactam pharmacokinetic/pharmacodynamic‐derived dose justification for phase 3 studies in patients with nosocomial pneumonia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ceftolozane/tazobactam is an antipseudomonal antibacterial approved for the treatment of complicated urinary tract infections (cUTIs) and complicated intra‐abdominal infections (cIAIs) and in phase 3 clinical development for treatment of nosocomial pneumonia. A population pharmacokinetic (PK) model with the plasma‐to‐epithelial lining fluid (ELF) kinetics of ceftolozane/tazobactam was used to justify dosing regimens for patients with nosocomial pneumonia in phase 3 studies. Monte Carlo simulations were performed to determine ceftolozane/tazobactam dosing regimens with a >90% probability of target attainment (PTA) for a range of pharmacokinetic/pharmacodynamic targets at relevant minimum inhibitory concentrations (MICs) for key pathogens in nosocomial pneumonia. With a plasma‐to‐ELF penetration ratio of approximately 50%, as observed from an ELF PK study, a doubling of the current dose regimens for different renal functions that are approved for cUTIs and cIAIs is needed to achieve >90% PTA for nosocomial pneumonia. For example, a 3‐g dose of ceftolozane/tazobactam for nosocomial pneumonia patients with normal renal function is needed to achieve a >90% PTA (actual 98%) for the 1‐log kill target against pathogens with an MIC of ≤8 mg/L in ELF, compared with the 1.5‐g dose approved for cIAIs and cUTIs.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients?

          Morbidity and mortality for critically ill patients with infections remains a global healthcare problem. We aimed to determine whether β-lactam antibiotic dosing in critically ill patients achieves concentrations associated with maximal activity and whether antibiotic concentrations affect patient outcome. This was a prospective, multinational pharmacokinetic point-prevalence study including 8 β-lactam antibiotics. Two blood samples were taken from each patient during a single dosing interval. The primary pharmacokinetic/pharmacodynamic targets were free antibiotic concentrations above the minimum inhibitory concentration (MIC) of the pathogen at both 50% (50% f T>MIC) and 100% (100% f T>MIC) of the dosing interval. We used skewed logistic regression to describe the effect of antibiotic exposure on patient outcome. We included 384 patients (361 evaluable patients) across 68 hospitals. The median age was 61 (interquartile range [IQR], 48-73) years, the median Acute Physiology and Chronic Health Evaluation II score was 18 (IQR, 14-24), and 65% of patients were male. Of the 248 patients treated for infection, 16% did not achieve 50% f T>MIC and these patients were 32% less likely to have a positive clinical outcome (odds ratio [OR], 0.68; P = .009). Positive clinical outcome was associated with increasing 50% f T>MIC and 100% f T>MIC ratios (OR, 1.02 and 1.56, respectively; P < .03), with significant interaction with sickness severity status. Infected critically ill patients may have adverse outcomes as a result of inadeqaute antibiotic exposure; a paradigm change to more personalized antibiotic dosing may be necessary to improve outcomes for these most seriously ill patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI)

            This phase 3 trial compared ceftolozane/tazobactam plus metronidazole vs meropenem for the treatment of complicated intra-abdominal infections. Ceftolozane/tazobactam plus metronidazole was noninferior to meropenem. High rates of presumed microbiological eradication of Enterobacteriaceae and Pseudomonas aeruginosa were found with both regimens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections.

              Studies of beta-lactam pharmacodynamics in infected patients are sparse. In this study, classification and regression tree (CART) and logistic regression analyses were used to identify which pharmacodynamic indices and magnitudes were significant predictors of meropenem efficacy for 101 adult patients with lower respiratory tract infections (LRTI). Using demographic data, a validated population pharmacokinetic model was employed to predict pharmacokinetic parameters and free serum concentrations in the studied patients. Pharmacodynamic indices [percentage of the dosing interval that free drug concentrations remain above the MIC (% fT > MIC), f(maximum concentration of drug in serum) (fC(max))/MIC, fC(min)/MIC, and f(area under the concentration-time curve) (fAUC)/MIC] were calculated based on the baseline pathogen with the highest drug MIC for each patient. The median (range) of percent fT > MIC, fC(max)/MIC, fC(min)/MIC, and fAUC/MIC were 100% (0 to 100%), 728.8 (0.8 to 15,777), 19.9 (0.01 to 278), and 3,605.4 (2.7 to 60,865.9), respectively. CART identified the following breakpoints as significant predictors for microbiological response: >54% fT > MIC, a fC(max)/MIC > 383, and a fC(min)/MIC > 5; fC(min)/MIC > 5 was the only significant predictor of clinical response. Due to 100% fT > MIC achieved in the majority of LRTI patients, fC(min)/MIC was the statistically significant parameter associated with meropenem clinical and microbiological response in the adults with LRTI. The findings for LRTI patients can be applied to optimize meropenem dose regimens to achieve clinical success and microbiological eradication in clinical practice.
                Bookmark

                Author and article information

                Journal
                J Clin Pharmacol
                J Clin Pharmacol
                10.1002/(ISSN)1552-4604
                JCPH
                Journal of Clinical Pharmacology
                John Wiley and Sons Inc. (Hoboken )
                0091-2700
                1552-4604
                January 2016
                25 August 2015
                : 56
                : 1 ( doiID: 10.1002/jcph.v56.1 )
                : 56-66
                Affiliations
                [ 1 ] Merck and Co., Inc.Kenilworth NJUSA
                [ 2 ] Hartford HospitalHartford CTUSA
                Author notes
                [*] [* ] Corresponding Author:

                Alan J. Xiao, PhD, Merck and Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033

                Email: alan_xiao@ 123456merck.com

                Article
                JCPH566
                10.1002/jcph.566
                5049594
                26096377
                ecf3a185-8be3-4651-9edc-44d75ea472e4
                © 2015 The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 23 March 2015
                : 02 June 2015
                Page count
                Pages: 11
                Funding
                Funded by: Merck and Co., Inc.
                Categories
                Pharmacokinetics/Pharmacodynamics
                Pharmacokinetics/Pharmacodynamics
                Custom metadata
                2.0
                jcph566
                January 2016
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.9.4 mode:remove_FC converted:04.10.2016

                ceftolozane/tazobactam,epithelial lining fluid,nosocomial pneumonia,pseudomonas aeruginosa,probability of target attainment,dose justification

                Comments

                Comment on this article