70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks ( n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          High-Fat Diet Reduces the Formation of Butyrate, but Increases Succinate, Inflammation, Liver Fat and Cholesterol in Rats, while Dietary Fibre Counteracts These Effects

          Introduction Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs), particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation. Objective To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks. Material and Methods Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin – acetic acid; guar gum – propionic acid; or a mixture – butyric acid). At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks. Results and Discussion Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women.

            Viscous fibers typically reduce total cholesterol (TC) by 3-7% in humans. The cholesterol-lowering properties of the viscous fiber pectin may depend on its physico-chemical properties (viscosity, molecular weight (MW) and degree of esterification (DE)), but these are not typically described in publications, nor required by European Food Safety Authority (EFSA) with respect to its generic pectin cholesterol-lowering claim. Here, different sources and types of well-characterized pectin were evaluated in humans. Cross-over studies were completed in mildly hyper-cholesterolemic persons receiving either 15 g/day pectin or cellulose with food for 4 weeks. Relative low-density lipoprotein (LDL) cholesterol (LDL-C) lowering was as follows: citrus pectin DE-70=apple pectin DE-70 (7-10% reduction versus control)>apple pectin DE-35=citrus pectin DE-35>OPF (orange pulp fiber) DE-70 and low-MW pectin DE-70>citrus DE-0. In a subsequent 3-week trial with 6 g/day pectin, citrus DE-70 and high MW pectin DE-70 reduced LDL-C 6-7% versus control (without changes in TC). In both studies, high DE and high MW were important for cholesterol lowering. Source may also be important as citrus and apple DE-70 pectin were more effective than OPF DE-70 pectin. Pectin did not affect inflammatory markers high-sensitivity C-reactive protein (hsCRP) nor plasma homocysteine. Pectin source and type (DE and MW) affect cholesterol lowering. The EFSA pectin cholesterol-lowering claim should require a minimum level of characterization, including DE and MW.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1.

              Nutrient intake regulates intestinal epithelial mass and crypt proliferation. Recent findings in model organisms and rodents indicate nutrient restriction impacts intestinal stem cells (ISC). Little is known about the impact of diet-induced obesity (DIO), a model of excess nutrient intake on ISC. We used a Sox9-EGFP reporter mouse to test the hypothesis that an adaptive response to DIO or associated hyperinsulinemia involves expansion and hyperproliferation of ISC. The Sox9-EGFP reporter mouse allows study and isolation of ISC, progenitors, and differentiated lineages based on different Sox9-EGFP expression levels. Sox9-EGFP mice were fed a high-fat diet for 20 weeks to induce DIO and compared with littermates fed low-fat rodent chow. Histology, fluorescence activated cell sorting, and mRNA analyses measured impact of DIO on jejunal crypt-villus morphometry, numbers, and proliferation of different Sox9-EGFP cell populations and gene expression. An in vitro culture assay directly assessed functional capacity of isolated ISC. DIO mice exhibited significant increases in body weight, plasma glucose, insulin, and insulin-like growth factor 1 (IGF1) levels and intestinal Igf1 mRNA. DIO mice had increased villus height and crypt density but decreased intestinal length and decreased numbers of Paneth and goblet cells. In vivo, DIO resulted in a selective expansion of Sox9-EGFP(Low) ISC and percentage of ISC in S-phase. ISC expansion significantly correlated with plasma insulin levels. In vitro, isolated ISC from DIO mice formed fewer enteroids in standard 3D Matrigel culture compared to controls, indicating impaired ISC function. This decreased enteroid formation in isolated ISC from DIO mice was rescued by exogenous insulin, IGF1, or both. We conclude that DIO induces specific increases in ISC and ISC hyperproliferation in vivo. However, isolated ISC from DIO mice have impaired intrinsic survival and growth in vitro that can be rescued by exogenous insulin or IGF1.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 October 2015
                2015
                : 10
                : 10
                : e0140392
                Affiliations
                [001]Ingestive Behaviour Group, Obesity & Metabolic Health Division, Rowett Institute of Nutrition & Health, University of Aberdeen, Aberdeen AB21 9SB, Scotland, United Kingdom
                National Institute of Agronomic Research, FRANCE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CLA AWR. Performed the experiments: CLA LMT PAW AWR. Analyzed the data: CLA. Contributed reagents/materials/analysis tools: LMT PAW. Wrote the paper: CLA AWR.

                Article
                PONE-D-15-26738
                10.1371/journal.pone.0140392
                4598151
                26447990
                ed063268-d26c-4034-8299-1e9ff94ef19c
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 18 June 2015
                : 24 September 2015
                Page count
                Figures: 3, Tables: 4, Pages: 14
                Funding
                This work was funded by the Scottish Government Rural and Environment Science and Analytical Services Division. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article