7
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of Commercial Off-The-Shelf Devices for the Detection of Manual Gestures in Surgery: Systematic Literature Review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The increasingly pervasive presence of technology in the operating room raises the need to study the interaction between the surgeon and computer system. A new generation of tools known as commercial off-the-shelf (COTS) devices enabling touchless gesture–based human-computer interaction is currently being explored as a solution in surgical environments.

          Objective

          The aim of this systematic literature review was to provide an account of the state of the art of COTS devices in the detection of manual gestures in surgery and to identify their use as a simulation tool for motor skills teaching in minimally invasive surgery (MIS).

          Methods

          For this systematic literature review, a search was conducted in PubMed, Excerpta Medica dataBASE, ScienceDirect, Espacenet, OpenGrey, and the Institute of Electrical and Electronics Engineers databases. Articles published between January 2000 and December 2017 on the use of COTS devices for gesture detection in surgical environments and in simulation for surgical skills learning in MIS were evaluated and selected.

          Results

          A total of 3180 studies were identified, 86 of which met the search selection criteria. Microsoft Kinect (Microsoft Corp) and the Leap Motion Controller (Leap Motion Inc) were the most widely used COTS devices. The most common intervention was image manipulation in surgical and interventional radiology environments, followed by interaction with virtual reality environments for educational or interventional purposes. The possibility of using this technology to develop portable low-cost simulators for skills learning in MIS was also examined. As most of the articles identified in this systematic review were proof-of-concept or prototype user testing and feasibility testing studies, we concluded that the field was still in the exploratory phase in areas requiring touchless manipulation within environments and settings that must adhere to asepsis and antisepsis protocols, such as angiography suites and operating rooms.

          Conclusions

          COTS devices applied to hand and instrument gesture–based interfaces in the field of simulation for skills learning and training in MIS could open up a promising field to achieve ubiquitous training and presurgical warm up.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications

          Consumer-grade range cameras such as the Kinect sensor have the potential to be used in mapping applications where accuracy requirements are less strict. To realize this potential insight into the geometric quality of the data acquired by the sensor is essential. In this paper we discuss the calibration of the Kinect sensor, and provide an analysis of the accuracy and resolution of its depth data. Based on a mathematical model of depth measurement from disparity a theoretical error analysis is presented, which provides an insight into the factors influencing the accuracy of the data. Experimental results show that the random error of depth measurement increases with increasing distance to the sensor, and ranges from a few millimeters up to about 4 cm at the maximum range of the sensor. The quality of the data is also found to be influenced by the low resolution of the depth measurements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virtual reality training improves operating room performance: results of a randomized, double-blinded study.

            To demonstrate that virtual reality (VR) training transfers technical skills to the operating room (OR) environment. The use of VR surgical simulation to train skills and reduce error risk in the OR has never been demonstrated in a prospective, randomized, blinded study. Sixteen surgical residents (PGY 1-4) had baseline psychomotor abilities assessed, then were randomized to either VR training (MIST VR simulator diathermy task) until expert criterion levels established by experienced laparoscopists were achieved (n = 8), or control non-VR-trained (n = 8). All subjects performed laparoscopic cholecystectomy with an attending surgeon blinded to training status. Videotapes of gallbladder dissection were reviewed independently by two investigators blinded to subject identity and training, and scored for eight predefined errors for each procedure minute (interrater reliability of error assessment r > 0.80). No differences in baseline assessments were found between groups. Gallbladder dissection was 29% faster for VR-trained residents. Non-VR-trained residents were nine times more likely to transiently fail to make progress (P <.007, Mann-Whitney test) and five times more likely to injure the gallbladder or burn nontarget tissue (chi-square = 4.27, P <.04). Mean errors were six times less likely to occur in the VR-trained group (1.19 vs. 7.38 errors per case; P <.008, Mann-Whitney test). The use of VR surgical simulation to reach specific target criteria significantly improved the OR performance of residents during laparoscopic cholecystectomy. This validation of transfer of training skills from VR to OR sets the stage for more sophisticated uses of VR in assessment, training, error reduction, and certification of surgeons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Analysis of the Accuracy and Robustness of the Leap Motion Controller

              The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J. Med. Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications (Toronto, Canada )
                1439-4456
                1438-8871
                May 2019
                03 May 2019
                : 21
                : 5
                : e11925
                Affiliations
                [1 ] Faculty of Health Sciences Universitat Oberta de Catalunya Barcelona Spain
                [2 ] Faculty of Health Sciences Universidad de Manizales Caldas Colombia
                [3 ] Faculty of Psychology and Education Sciences Universitat Oberta de Catalunya Barcelona Spain
                Author notes
                Corresponding Author: Francesc Saigí-Rubió fsaigi@ 123456uoc.edu
                Author information
                http://orcid.org/0000-0002-1889-1097
                http://orcid.org/0000-0001-9616-1551
                Article
                v21i5e11925
                10.2196/11925
                6533048
                31066679
                ed0a0159-39fa-494f-9873-90729c571a72
                ©Fernando Alvarez-Lopez, Marcelo Fabián Maina, Francesc Saigí-Rubió. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 14.04.2019.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/.as well as this copyright and license information must be included.

                History
                : 12 August 2018
                : 13 October 2018
                : 4 January 2019
                : 25 January 2019
                Categories
                Review
                Review

                Medicine
                minimally invasive surgery,user-computer interface,operating room,education, medical,computer-assisted surgery

                Comments

                Comment on this article