34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PET/CT imaging of Mycobacterium tuberculosis infection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tuberculosis has a high morbidity and mortality worldwide. Mycobacterium tuberculosis ( Mtb) has a complex pathophysiology; it is an aerobic bacillus capable of surviving in anaerobic conditions in a latent state for a very long time before reactivation to active disease. In the latent tuberculosis infection, the individual has no clinical evidence of active disease, but exhibits a hypersensitive response to proteins of Mtb. Only some 5–10 % of latently infected individuals appear to have reactivation of tuberculosis at any one time point after infection, and neither imaging nor immune tests have been shown to predict tuberculosis reactivation reliably. The complex pathology of the organism provides multiple molecular targets for imaging the infection and targeting therapy. Positron emission tomography (PET) integrated with computer tomography (CT) provides a unique opportunity to noninvasively image the whole body for diagnosing, staging and assessing therapy response in many infectious and inflammatory diseases. PET/CT is a powerful noninvasive tool that can rapidly provide three-dimensional views of disease deep within the body and conduct longitudinal assessment over time in one particular patient. Some PET tracers, such as 18F-fluorodeoxyglucose ( 18F-FDG), have been found to be useful in various infectious diseases for detection, assessing disease activity, staging and monitoring response to therapy. This tracer has also been used for imaging tuberculosis. 18F-FDG PET relies on the glucose uptake of inflammatory cells as a result of the respiratory burst that occurs with infection. Other PET tracers have also been used to image different aspects of the pathology or microbiology of Mtb. The synthesis of the complex cell membrane of the bacilli for example can be imaged with 11C-choline or 18F-fluoroethylcholine PET/CT while the uptake of amino acids during cell growth can be imaged by 3′-deoxy-3′-[ 18F]fluoro- l-thymidine. PET/CT provides a noninvasive and sensitive method of assessing histopathological information on different aspects of tuberculosis and is already playing a role in the management of tuberculosis. As our understanding of the pathophysiology of tuberculosis increases, the role of PET/CT in the management of this disease would become more important. In this review, we highlight the various tracers that have been used in tuberculosis and explain the underlying mechanisms for their use.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update.

          Interferon-gamma-release assays (IGRAs) are alternatives to the tuberculin skin test (TST). A recent meta-analysis showed that IGRAs have high specificity, even among populations that have received bacille Calmette-Guérin (BCG) vaccination. Sensitivity was suboptimal for TST and IGRAs. To incorporate newly reported evidence from 20 studies into an updated meta-analysis on the sensitivity and specificity of IGRAs. PubMed was searched through 31 March 2008, and citations of all original articles, guidelines, and reviews for studies published in English were reviewed. Studies that evaluated QuantiFERON-TB Gold, QuantiFERON-TB Gold In-Tube (both from Cellestis, Victoria, Australia), and T-SPOT.TB (Oxford Immunotec, Oxford, United Kingdom) or its precommercial ELISpot version, when data on the commercial version were lacking. For assessing sensitivity, the study sample had to have microbiologically confirmed active tuberculosis. For assessing specificity, the sample had to comprise healthy, low-risk individuals without known exposure to tuberculosis. Studies with fewer than 10 participants and those that included only immunocompromised participants were excluded. One reviewer abstracted data on participant characteristics, test characteristics, and test performance from 38 studies; these data were double-checked by a second reviewer. The original investigators were contacted for additional information when necessary. A fixed-effects meta-analysis with correction for overdispersion was done to pool data within prespecified subgroups. The pooled sensitivity was 78% (95% CI, 73% to 82%) for QuantiFERON-TB Gold, 70% (CI, 63% to 78%) for QuantiFERON-TB Gold In-Tube, and 90% (CI, 86% to 93%) for T-SPOT.TB. The pooled specificity for both QuantiFERON tests was 99% among non-BCG-vaccinated participants (CI, 98% to 100%) and 96% (CI, 94% to 98%) among BCG-vaccinated participants. The pooled specificity of T-SPOT.TB (including its precommercial ELISpot version) was 93% (CI, 86% to 100%). Tuberculin skin test results were heterogeneous, but specificity in non-BCG-vaccinated participants was consistently high (97% [CI, 95% to 99%]). Most studies were small and had limitations, including no gold standard for diagnosing latent tuberculosis and variable TST methods and cutoff values. Data on the specificity of the commercial T-SPOT.TB assay were limited. The IGRAs, especially QuantiFERON-TB Gold and QuantiFERON-TB Gold In-Tube, have excellent specificity that is unaffected by BCG vaccination. Tuberculin skin test specificity is high in non-BCG-vaccinated populations but low and variable in BCG-vaccinated populations. Sensitivity of IGRAs and TST is not consistent across tests and populations, but T-SPOT.TB appears to be more sensitive than both QuantiFERON tests and TST.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project.

            To estimate the risk and prevalence of Mycobacterium tuberculosis (MTB) infection and tuberculosis (TB) incidence, prevalence, and mortality, including disease attributable to human immunodeficiency virus (HIV), for 212 countries in 1997. A panel of 86 TB experts and epidemiologists from more than 40 countries was chosen by the World Health Organization (WHO), with final agreement being reached between country experts and WHO staff. Incidence of TB and mortality in each country was determined by (1) case notification to the WHO, (2) annual risk of infection data from tuberculin surveys, and (3) data on prevalence of smear-positive pulmonary disease from prevalence surveys. Estimates derived from relatively poor data were strongly influenced by panel member opinion. Objective estimates were derived from high-quality data collected recently by approved procedures. Agreement was reached by (1) participants reviewing methods and data and making provisional estimates in closed workshops held at WHO's 6 regional offices, (2) principal authors refining estimates using standard methods and all available data, and (3) country experts reviewing and adjusting these estimates and reaching final agreement with WHO staff. In 1997, new cases of TB totaled an estimated 7.96 million (range, 6.3 million-11.1 million), including 3.52 million (2.8 million-4.9 million) cases (44%) of infectious pulmonary disease (smear-positive), and there were 16.2 million (12.1 million-22.5 million) existing cases of disease. An estimated 1.87 million (1.4 million-2.8 million) people died of TB and the global case fatality rate was 23% but exceeded 50% in some African countries with high HIV rates. Global prevalence of MTB infection was 32% (1.86 billion people). Eighty percent of all incident TB cases were found in 22 countries, with more than half the cases occurring in 5 Southeast Asian countries. Nine of 10 countries with the highest incidence rates per capita were in Africa. Prevalence of MTB/HIV coinfection worldwide was 0.18% and 640000 incident TB cases (8%) had HIV infection. The global burden of tuberculosis remains enormous, mainly because of poor control in Southeast Asia, sub-Saharan Africa, and eastern Europe, and because of high rates of M tuberculosis and HIV coinfection in some African countries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Type VII secretion--mycobacteria show the way.

              Recent evidence shows that mycobacteria have developed novel and specialized secretion systems for the transport of extracellular proteins across their hydrophobic, and highly impermeable, cell wall. Strikingly, mycobacterial genomes encode up to five of these transport systems. Two of these systems, ESX-1 and ESX-5, are involved in virulence - they both affect the cell-to-cell migration of pathogenic mycobacteria. Here, we discuss this novel secretion pathway and consider variants that are present in various Gram-positive bacteria. Given the unique composition of this secretion system, and its general importance, we propose that, in line with the accepted nomenclature, it should be called type VII secretion.
                Bookmark

                Author and article information

                Contributors
                +31-63-3636578 , a.o.ankrah@umcg.nl
                Journal
                Clin Transl Imaging
                Clin Transl Imaging
                Clinical and Translational Imaging
                Springer Milan (Milan )
                2281-5872
                2281-7565
                7 March 2016
                7 March 2016
                2016
                : 4
                : 131-144
                Affiliations
                [ ]Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700 RB Gronigen, The Netherlands
                [ ]Department of Internal Medicine, Infectious Diseases, and Pulmonary Diseases and Tuberculosis, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
                [ ]Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
                Article
                164
                10.1007/s40336-016-0164-0
                4820496
                27077068
                ed0ea479-5b08-4164-a6ad-c4f5b0283237
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 14 December 2015
                : 9 February 2016
                Categories
                Review Article
                Custom metadata
                © Italian Association of Nuclear Medicine and Molecular Imaging 2016

                pet/ct,tuberculosis,3′-deoxy-3′-[18f]fluoro-l-thymidine,18f-fluoroethylcholine,68ga-citrate

                Comments

                Comment on this article