11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Biology of Escherichia coli Shiga Toxins’ Effects on Mammalian Cells

      review-article
      Toxins
      MDPI
      Shiga toxin, verotoxin, STEC, EHEC, O157, receptor, cytotoxicity, apoptosis, modulation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shiga toxins (Stxs), syn. Vero(cyto)toxins, are potent bacterial exotoxins and the principal virulence factor of enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin-producing E. coli (STEC). EHEC strains, e.g., strains of serovars O157:H7 and O104:H4, may cause individual cases as well as large outbreaks of life-threatening diseases in humans. Stxs primarily exert a ribotoxic activity in the eukaryotic target cells of the mammalian host resulting in rapid protein synthesis inhibition and cell death. Damage of endothelial cells in the kidneys and the central nervous system by Stxs is central in the pathogenesis of hemolytic uremic syndrome (HUS) in humans and edema disease in pigs. Probably even more important, the toxins also are capable of modulating a plethora of essential cellular functions, which eventually disturb intercellular communication. The review aims at providing a comprehensive overview of the current knowledge of the time course and the consecutive steps of Stx/cell interactions at the molecular level. Intervention measures deduced from an in-depth understanding of this molecular interplay may foster our basic understanding of cellular biology and microbial pathogenesis and pave the way to the creation of host-directed active compounds to mitigate the pathological conditions of STEC infections in the mammalian body.

          Related collections

          Most cited references283

          • Record: found
          • Abstract: found
          • Article: not found

          The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli.

          Forty pediatric patients with idiopathic hemolytic uremic syndrome (HUS) were investigated for evidence of infection by Verotoxin-producing Escherichia coli (VTEC). Fecal VTEC (belonging to at least six different O serogroups including O26, O111, O113, O121, O145, and O157) or specifically neutralizable free-fecal Verotoxin (VT) or both were detected in 24 (60%) patients but were not detected in 40 matched controls. Ten of 15 of the former developed fourfold or greater rises in VT-neutralizing antibody titers, as did six other patients who were negative for both fecal VTEC and VT. A total of 30 (75%) patients had evidence of VTEC infection by one or more criteria. We concluded that a significant association exists between idiopathic HUS and infection by VTEC. The detection of free-fecal VT was the most important procedure for the early diagnosis of this infection because, in our study, VTEC were never isolated in the absence of fecal VT, whereas fecal VT was often present even when VTEC were undetectable.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform

            The molecular mechanisms underlying early/recycling endosomes-to-TGN transport are still not understood. We identified interactions between the TGN-localized putative t-SNAREs syntaxin 6, syntaxin 16, and Vti1a, and two early/recycling endosomal v-SNAREs, VAMP3/cellubrevin, and VAMP4. Using a novel permeabilized cell system, these proteins were functionally implicated in the post-Golgi retrograde transport step. The function of Rab6a' was also required, whereas its closely related isoform, Rab6a, has previously been implicated in Golgi-to-endoplasmic reticulum transport. Thus, our study shows that membrane exchange between the early endocytic and the biosynthetic/secretory pathways involves specific components of the Rab and SNARE machinery, and suggests that retrograde transport between early/recycling endosomes and the endoplasmic reticulum is critically dependent on the sequential action of two members of the Rab6 subfamily.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA.

              Inhibition of protein synthesis per se does not potentiate the stress-activated protein kinases (SAPKs; also known as cJun NH2-terminal kinases [JNKs]). The protein synthesis inhibitor anisomycin, however, is a potent activator of SAPKs/JNKs. The mechanism of this activation is unknown. We provide evidence that in order to activate SAPK/JNK1, anisomycin requires ribosomes that are translationally active at the time of contact with the drug, suggesting a ribosomal origin of the anisomycin-induced signaling to SAPK/JNK1. In support of this notion, we have found that aminohexose pyrimidine nucleoside antibiotics, which bind to the same region in the 28S rRNA that is the target site for anisomycin, are also potent activators of SAPK/JNK1. Binding of an antibiotic to the 28S rRNA interferes with the functioning of the molecule by altering the structural interactions of critical regions. We hypothesized, therefore, that such alterations in the 28S rRNA may act as recognition signals to activate SAPK/JNK1. To test this hypothesis, we made use of two ribotoxic enzymes, ricin A chain and alpha-sarcin, both of which catalyze sequence-specific RNA damage in the 28S rRNA. Consistent with our hypothesis, ricin A chain and alpha-sarcin were strong agonists of SAPK/JNK1 and of its activator SEK1/MKK4 and induced the expression of the immediate-early genes c-fos and c-jun. As in the case of anisomycin, ribosomes that were active at the time of exposure to ricin A chain or alpha-sarcin were able to initiate signal transduction from the damaged 28S rRNA to SAPK/JNK1 while inactive ribosomes were not.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                23 May 2020
                May 2020
                : 12
                : 5
                : 345
                Affiliations
                Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, D-07743 Jena, Germany; christian.menge@ 123456fli.de ; Tel.: +49-3641-804-2430
                Article
                toxins-12-00345
                10.3390/toxins12050345
                7290813
                32456125
                ed10675c-cdaf-4d9d-b2be-ca68c5af50fe
                © 2020 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 April 2020
                : 20 May 2020
                Categories
                Review

                Molecular medicine
                shiga toxin,verotoxin,stec,ehec,o157,receptor,cytotoxicity,apoptosis,modulation
                Molecular medicine
                shiga toxin, verotoxin, stec, ehec, o157, receptor, cytotoxicity, apoptosis, modulation

                Comments

                Comment on this article