27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SLC4A11 and the Pathophysiology of Congenital Hereditary Endothelial Dystrophy

      review-article
      1 , 2 , 3 , * , 1 , 2 , 4
      BioMed Research International
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Congenital hereditary endothelial dystrophy (CHED) is a rare autosomal recessive disorder of the corneal endothelium characterized by nonprogressive bilateral corneal edema and opacification present at birth. Here we review the current knowledge on the role of the SLC4A11 gene, protein, and its mutations in the pathophysiology and clinical presentation of CHED. Individuals with CHED have mutations in SLC4A11 which encodes a transmembrane protein in the SLC4 family of bicarbonate transporters. The expression of SLC4A11 in the corneal endothelium and inner ear patterns the deficits seen in CHED with corneal edema and hearing loss (Harboyan syndrome). slc4a11-null-mouse models recapitulate the CHED disease phenotype, thus establishing a functional role for SLC4A11 in CHED. However, the transport function of SLC4A11 remains unsettled. Some of the roles that have been attributed to SLC4A11 include H + and NH 4 + permeation, electrogenic Na +-H + exchange, and water transport. Future studies of the consequences of SLC4A11 dysfunction as well as further understanding of corneal endothelial ion transport will help clarify the involvement of SLC4A11 in the pathophysiology of CHED.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The SLC4 family of bicarbonate (HCO₃⁻) transporters.

          The SLC4 family consists of 10 genes (SLC4A1-5; SLC4A7-11). All encode integral membrane proteins with very similar hydropathy plots-consistent with 10-14 transmembrane segments. Nine SLC4 members encode proteins that transport HCO3(-) (or a related species, such as CO3(2-)) across the plasma membrane. Functionally, eight of these proteins fall into two major groups: three Cl-HCO3 exchangers (AE1-3) and five Na(+)-coupled HCO3(-) transporters (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE). Two of the Na(+)-coupled transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO3(-) transporters and all three AEs are electroneutral. In addition, two other SLC4 members (AE4, SLC4A9 and BTR1, SLC4A11) do not yet have a firmly established function. Most, though not all, SLC4 members are functionally inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 proteins play important roles many modes of acid-base homeostasis: the carriage of CO2 by erythrocytes, the transport of H(+) or HCO3(-) by several epithelia, as well as the regulation of cell volume and intracellular pH. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The IC3D classification of the corneal dystrophies.

            The recent availability of genetic analyses has demonstrated the shortcomings of the current phenotypic method of corneal dystrophy classification. Abnormalities in different genes can cause a single phenotype, whereas different defects in a single gene can cause different phenotypes. Some disorders termed corneal dystrophies do not appear to have a genetic basis. The purpose of this study was to develop a new classification system for corneal dystrophies, integrating up-to-date information on phenotypic description, pathologic examination, and genetic analysis. The International Committee for Classification of Corneal Dystrophies (IC3D) was created to devise a current and accurate nomenclature. This anatomic classification continues to organize dystrophies according to the level chiefly affected. Each dystrophy has a template summarizing genetic, clinical, and pathologic information. A category number from 1 through 4 is assigned, reflecting the level of evidence supporting the existence of a given dystrophy. The most defined dystrophies belong to category 1 (a well-defined corneal dystrophy in which a gene has been mapped and identified and specific mutations are known) and the least defined belong to category 4 (a suspected dystrophy where the clinical and genetic evidence is not yet convincing). The nomenclature may be updated over time as new information regarding the dystrophies becomes available. The IC3D Classification of Corneal Dystrophies is a new classification system that incorporates many aspects of the traditional definitions of corneal dystrophies with new genetic, clinical, and pathologic information. Standardized templates provide key information that includes a level of evidence for there being a corneal dystrophy. The system is user-friendly and upgradeable and can be retrieved on the website www.corneasociety.org/ic3d.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2).

              Congenital hereditary endothelial dystrophy (CHED) is a heritable, bilateral corneal dystrophy characterized by corneal opacification and nystagmus. We describe seven different mutations in the SLC4A11 gene in ten families with autosomal recessive CHED. Mutations in SLC4A11, which encodes a membrane-bound sodium-borate cotransporter, cause loss of function of the protein either by blocking its membrane targeting or nonsense-mediated decay.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                16 September 2015
                : 2015
                : 475392
                Affiliations
                1Department of Ophthalmology, Ross Eye Institute, School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, 1176 Main Street, Buffalo, NY 14209, USA
                2SUNY Eye Institute, Buffalo, NY 14214, USA
                3Research Service, Veterans Administration Western New York Healthcare System (VAWNYHS), Building 20, 3495 Bailey Avenue, Buffalo, NY 14215, USA
                4Department of Physiology and Biophysics, The State University of New York at Buffalo, 124 Sherman Hall, Buffalo, NY 14214, USA
                Author notes
                *Sangita P. Patel: sppatel@ 123456buffalo.edu

                Academic Editor: Marta Sacchetti

                Article
                10.1155/2015/475392
                4588344
                26451371
                ed1a7430-8054-4ed9-a221-78047b9419b5
                Copyright © 2015 S. P. Patel and M. D. Parker.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 March 2015
                : 17 May 2015
                Categories
                Review Article

                Comments

                Comment on this article