199
views
0
recommends
+1 Recommend
0 collections
    38
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using the guinea pig as a model host, we show that aerosol spread of influenza virus is dependent upon both ambient relative humidity and temperature. Twenty experiments performed at relative humidities from 20% to 80% and 5 °C, 20 °C, or 30 °C indicated that both cold and dry conditions favor transmission. The relationship between transmission via aerosols and relative humidity at 20 °C is similar to that previously reported for the stability of influenza viruses (except at high relative humidity, 80%), implying that the effects of humidity act largely at the level of the virus particle. For infected guinea pigs housed at 5 °C, the duration of peak shedding was approximately 40 h longer than that of animals housed at 20 °C; this increased shedding likely accounts for the enhanced transmission seen at 5 °C. To investigate the mechanism permitting prolonged viral growth, expression levels in the upper respiratory tract of several innate immune mediators were determined. Innate responses proved to be comparable between animals housed at 5 °C and 20 °C, suggesting that cold temperature (5 °C) does not impair the innate immune response in this system. Although the seasonal epidemiology of influenza is well characterized, the underlying reasons for predominant wintertime spread are not clear. We provide direct, experimental evidence to support the role of weather conditions in the dynamics of influenza and thereby address a long-standing question fundamental to the understanding of influenza epidemiology and evolution.

          Author Summary

          In temperate regions influenza epidemics recur with marked seasonality: in the northern hemisphere the influenza season spans November to March, while in the southern hemisphere epidemics last from May until September. Although seasonality is one of the most familiar features of influenza, it is also one of the least understood. Indoor crowding during cold weather, seasonal fluctuations in host immune responses, and environmental factors, including relative humidity, temperature, and UV radiation have all been suggested to account for this phenomenon, but none of these hypotheses has been tested directly. Using the guinea pig model, we have evaluated the effects of temperature and relative humidity on influenza virus spread. By housing infected and naïve guinea pigs together in an environmental chamber, we carried out transmission experiments under conditions of controlled temperature and humidity. We found that low relative humidities of 20%–35% were most favorable, while transmission was completely blocked at a high relative humidity of 80%. Furthermore, when guinea pigs were kept at 5 °C, transmission occurred with greater frequency than at 20 °C, while at 30 °C, no transmission was detected. Our data implicate low relative humidities produced by indoor heating and cold temperatures as features of winter that favor influenza virus spread.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Review of Aerosol Transmission of Influenza A Virus

          Concerns about the likely occurrence of an influenza pandemic in the near future are increasing. The highly pathogenic strains of influenza A (H5N1) virus circulating in Asia, Europe, and Africa have become the most feared candidates for giving rise to a pandemic strain. Several authors have stated that large-droplet transmission is the predominant mode by which influenza virus infection is acquired ( 1 – 3 ). As a consequence of this opinion, protection against infectious aerosols is often ignored for influenza, including in the context of influenza pandemic preparedness. For example, the Canadian Pandemic Influenza Plan and the US Department of Health and Human Services Pandemic Influenza Plan ( 4 , 5 ) recommend surgical masks, not N95 respirators, as part of personal protective equipment (PPE) for routine patient care. This position contradicts the knowledge on influenza virus transmission accumulated in the past several decades. Indeed, the relevant chapters of many reference books, written by recognized authorities, refer to aerosols as an important mode of transmission for influenza ( 6 – 9 ). In preparation for a possible pandemic caused by a highly lethal virus such as influenza A (H5N1), making the assumption that the role of aerosols in transmission of this virus will be similar to their role in the transmission of known human influenza viruses would seem rational. Because infection with influenza A (H5N1) virus is associated with high death rates and because healthcare workers cannot as yet be protected by vaccination, recommending an enhanced level of protection, including the use of N95 respirators as part of PPE, is important. Following are a brief review of the relevant published findings that support the importance of aerosol transmission of influenza and a brief discussion on the implications of these findings on pandemic preparedness. Influenza Virus Aerosols By definition, aerosols are suspensions in air (or in a gas) of solid or liquid particles, small enough that they remain airborne for prolonged periods because of their low settling velocity. For spherical particles of unit density, settling times (for a 3-m fall) for specific diameters are 10 s for 100 μm, 4 min for 20 μm, 17 min for 10 μm, and 62 min for 5 μm; particles with a diameter 6-μm diameter are trapped increasingly in the upper respiratory tract ( 12 ); no substantial deposition in the lower respiratory tract occurs at >20 μm ( 11 , 12 ). Many authors adopt a size cutoff of 10–20 μm will settle rapidly, will not be deposited in the lower respiratory tract, and are referred to as large droplets ( 10 – 12 ). Coughing or sneezing generates a substantial quantity of particles, a large number of which are 40%. The increased survival of influenza virus in aerosols at low relative humidity has been suggested as a factor that accounts for the seasonality of influenza ( 15 , 16 ). The sharply increased decay of infectivity at high humidity has also been observed for other enveloped viruses (e.g., measles virus); in contrast, exactly the opposite relationship has been shown for some nonenveloped viruses (e.g., poliovirus) ( 11 , 15 , 16 ). Experimental Influenza Infection Experimental infection studies permit the clear separation of the aerosol route of transmission from transmission by large droplets. Laboratory preparation of homogeneous small particle aerosols free of large droplets is readily achieved ( 13 , 18 ). Conversely, transmission by large droplets without accompanying aerosols can be achieved by intranasal drop inoculation ( 13 ). Influenza infection has been documented by aerosol exposure in the mouse model, the squirrel monkey model, and human volunteers ( 12 , 13 , 17 – 19 ). Observations made during experimental infections with human volunteers are particularly interesting and relevant. In studies conducted by Alford and colleagues ( 18 ), volunteers were exposed to carefully titrated aerosolized influenza virus suspensions by inhaling 10 L of aerosol through a face mask. The diameter of the aerosol particles was 1 μm–3 μm. Demonstration of infection in participants in the study was achieved by recovery of infectious viruses from throat swabs, taken daily, or by seroconversion, i.e., development of neutralizing antibodies. The use of carefully titrated viral stocks enabled the determination of the minimal infectious dose by aerosol inoculation. For volunteers who lacked detectable neutralizing antibodies at the onset, the 50% human infectious dose (HID50) was 0.6–3.0 TCID50, if one assumes a retention of 60% of the inhaled particles (18). In contrast, the HID50 measured when inoculation was performed by intranasal drops was 127–320 TCID50 ( 13 ). Additional data from experiments conducted with aerosolized influenza virus (average diameter 1.5 μm) showed that when a dose of 3 TCID50 was inhaled, ≈1 TCID50 only was deposited in the nose ( 12 ). Since the dose deposited in the nose is largely below the minimal dose required by intranasal inoculation, this would indicate that the preferred site of infection initiation during aerosol inoculation is the lower respiratory tract. Another relevant observation is that whereas the clinical symptoms initiated by aerosol inoculation covered the spectrum of symptoms seen in natural infections, the disease observed in study participants infected experimentally by intranasal drops was milder, with a longer incubation time and usually no involvement of the lower respiratory tract ( 13 , 20 ). For safety reasons, this finding led to the adoption of intranasal drop inoculation as the standard procedure in human experimental infections with influenza virus ( 13 ). Additional support for the view that the lower respiratory tract (which is most efficiently reached by the aerosol route) is the preferred site of infection is provided by studies on the use of zanamivir for prophylaxis. In experimental settings, intranasal zanamivir was protective against experimental inoculation with influenza virus in intranasal drops ( 21 ). However, in studies on prophylaxis of natural infection, intranasally applied zanamivir was not protective ( 22 ), whereas inhaled zanamivir was protective in one study ( 23 ) and a protective effect approached statistical significance in another study ( 22 ). These experiments and observations strongly support the view that many, possibly most, natural influenza infections occur by the aerosol route and that the lower respiratory tract may be the preferred site of initiation of the infection. Epidemiologic Observations In natural infections, the postulated modes of transmission have included aerosols, large droplets, and direct contact with secretions or fomites because the virus can remain infectious on nonporous dry surfaces for >(January 2006) recommends FFP2 respirators (equivalent to N95 respirators) (http://www.splf.org/s/IMG/pdf/plan-grip-janvier06.pdf). Given the scientific evidence that supports the occurrence of aerosol transmission of influenza, carefully reexamining current recommendations for PPE equipment would appear necessary.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Seasonal variation in host susceptibility and cycles of certain infectious diseases.

            S Dowell (2001)
            Seasonal cycles of infectious diseases have been variously attributed to changes in atmospheric conditions, the prevalence or virulence of the pathogen, or the behavior of the host. Some observations about seasonality are difficult to reconcile with these explanations. These include the simultaneous appearance of outbreaks across widespread geographic regions of the same latitude; the detection of pathogens in the off-season without epidemic spread; and the consistency of seasonal changes, despite wide variations in weather and human behavior. In contrast, an increase in susceptibility of the host population, perhaps linked to the annual light/dark cycle and mediated by the pattern of melatonin secretion, might account for many heretofore unexplained features of infectious disease seasonality. Ample evidence indicates that photoperiod-driven physiologic changes are typical in mammalian species, including some in humans. If such physiologic changes underlie human resistance to infectious diseases for large portions of the year and the changes can be identified and modified, the therapeutic and preventive implications may be considerable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmission of influenza: implications for control in health care settings.

              Annual influenza epidemics in the United States result in an average of >36,000 deaths and 114,000 hospitalizations. Influenza can spread rapidly to patients and health care personnel in health care settings after influenza is introduced by visitors, staff, or patients. Influenza outbreaks in health care facilities can have potentially devastating consequences, particularly for immunocompromised persons. Although vaccination of health care personnel and patients is the primary means to prevent and control outbreaks of influenza in health care settings, antiviral influenza medications and isolation precautions are important adjuncts. Although droplet transmission is thought to be the primary mode of influenza transmission, limited evidence is available to support the relative clinical importance of contact, droplet, and droplet nuclei (airborne) transmission of influenza. In this article, the results of studies on the modes of influenza transmission and their relevant isolation precautions are reviewed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2007
                19 October 2007
                : 3
                : 10
                : e151
                Affiliations
                [1 ] Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
                [2 ] Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
                University of North Carolina, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: anice.lowen@ 123456mssm.edu (ACL), peter.palese@ 123456mssm.edu (PP)
                Article
                07-PLPA-RA-0426R2 plpa-03-10-10
                10.1371/journal.ppat.0030151
                2034399
                17953482
                ed21a387-fb0c-4a93-a610-64a1da982604
                Copyright: © 2007 Lowen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 July 2007
                : 5 September 2007
                Page count
                Pages: 7
                Categories
                Research Article
                Virology
                Guinea Pig
                Viruses
                In Vitro
                Custom metadata
                Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3(10): e151. doi: 10.1371/journal.ppat.0030151

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article