7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting the Aryl Hydrocarbon Receptor With Indole-3-Aldehyde Protects From Vulvovaginal Candidiasis via the IL-22-IL-18 Cross-Talk

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vulvovaginal candidiasis (VVC) is a common mucosal infection caused by Candida spp., most frequently by Candida albicans, which may become recurrent and severely impacting the quality of life of susceptible women. Although it is increasingly being recognized that mucosal damage is mediated by an exaggerated inflammatory response, current therapeutic approaches are only based on antifungals that may relieve the symptomatology, but fail to definitely prevent recurrences. The unrestrained activation of the NLRP3 inflammasome with continuous production of IL-1β and recruitment of neutrophils is recognized as a pathogenic factor in VVC. We have previously shown that IL-22 is required to dampen pathogenic inflammasome activation in VVC via the NLRC4/IL-1Ra axis. However, IL-22 also regulates IL-18, a product of the inflammasome activity that regulates IL-22 expression. Here we describe a cross-regulatory circuit between IL-18 and IL-22 in murine VVC that is therapeutically druggable. We found that IL-18 production was dependent on IL-22 and NLRC4, and that IL-18, in turn, contributes to IL-22 activity. Like in IL-22 deficiency, IL-18 deficiency was associated with an increased susceptibility to VVC and unbalanced Th17/Treg response, suggesting that IL-18 can regulate both the innate and the adaptive responses to the fungus. Administration of the microbial metabolite indole-3-aldehyde, known to stimulate the production of IL-22 via the aryl hydrocarbon receptor (AhR), promoted IL-18 expression and protection against Candida infection. Should low levels of IL-18 be demonstrated in the vaginal fluids of women with recurrent VVC, targeting the AhR/IL-22/IL-18 pathway could be exploited for future therapeutic approaches in VVC. This study suggests that a deeper understanding of the mechanisms regulating inflammasome activity may lead to the identification of novel targets for intervention in VVC.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Invasive candidiasis

          Invasive candidiasis is an important health-care-associated fungal infection that can be caused by several Candida spp.; the most common species is Candida albicans, but the prevalence of these organisms varies considerably depending on geographical location. The spectrum of disease of invasive candidiasis ranges from minimally symptomatic candidaemia to fulminant sepsis with an associated mortality exceeding 70%. Candida spp. are common commensal organisms in the skin and gut microbiota, and disruptions in the cutaneous and gastrointestinal barriers (for example, owing to gastrointestinal perforation) promote invasive disease. A deeper understanding of specific Candida spp. virulence factors, host immune response and host susceptibility at the genetic level has led to key insights into the development of early intervention strategies and vaccine candidates. The early diagnosis of invasive candidiasis is challenging but key to the effective management, and the development of rapid molecular diagnostics could improve the ability to intervene rapidly and potentially reduce mortality. First-line drugs, including echinocandins and azoles, are effective, but the emergence of antifungal resistance, especially among Candida glabrata, is a matter of concern and underscores the need to administer antifungal medications in a judicious manner, avoiding overuse when possible. A newly described pathogen, Candida auris, is an emerging multidrug-resistant organism that poses a global threat.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling.

            Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted "postbiotic" metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation

              Cytokines are among the most important effector and messenger molecules in the immune system. They profoundly participate in immune responses during infection and inflammation, protecting against or contributing to diseases such as allergy, autoimmunity, and cancer. Manipulating cytokine pathways, therefore, is one of the most effective strategies to treat various diseases. IL-10 family cytokines exert essential functions to maintain tissue homeostasis during infection and inflammation through restriction of excessive inflammatory responses, upregulation of innate immunity, and promotion of tissue repairing mechanisms. Their important functions in diseases are supported by data from many preclinical models, human genetic studies, and clinical interventions. Despite significant efforts, however, there is still no clinically approved therapy through manipulating IL-10 family cytokines. Here, we summarize the recent progress in understanding the biology of this family of cytokines, suggesting more specific strategies to maneuver these cytokines for the effective treatment of inflammatory diseases and cancers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                11 October 2019
                2019
                : 10
                : 2364
                Affiliations
                [1] 1Department of Experimental Medicine, University of Perugia , Perugia, Italy
                [2] 2Department of Pharmaceutical Sciences, University of Perugia , Perugia, Italy
                [3] 3Department of Veterinary Medicine, University of Perugia , Perugia, Italy
                Author notes

                Edited by: Julio Aliberti, National Institute of Allergy and Infectious Diseases (NIAID), United States

                Reviewed by: Agostinho Carvalho, University of Minho, Portugal; Mirian Nacagami Sotto, University of São Paulo, Brazil; Vincent Bruno, University of Maryland, Baltimore, United States

                *Correspondence: Monica Borghi monicaborghi@ 123456live.com
                Claudio Costantini costacla76@ 123456gmail.com

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.02364
                6798081
                31681274
                ed2833e0-c010-4631-936b-195fb173c0ae
                Copyright © 2019 Borghi, Pariano, Solito, Puccetti, Bellet, Stincardini, Renga, Vacca, Sellitto, Mosci, Brancorsini, Romani and Costantini.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 June 2019
                : 20 September 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 34, Pages: 10, Words: 5983
                Funding
                Funded by: Seventh Framework Programme 10.13039/100011102
                Funded by: Horizon 2020 10.13039/501100007601
                Categories
                Immunology
                Original Research

                Immunology
                ahr,il-22,il-18,vulvovaginal candidiasis,3-iald
                Immunology
                ahr, il-22, il-18, vulvovaginal candidiasis, 3-iald

                Comments

                Comment on this article