2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      Involvement of the AHR in Development and Functioning of the Female and Male Reproductive Systems

      edited_book

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references220

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of infertility: research advances and clinical challenges.

          Reproduction is required for the survival of all mammalian species, and thousands of essential 'sex' genes are conserved through evolution. Basic research helps to define these genes and the mechanisms responsible for the development, function and regulation of the male and female reproductive systems. However, many infertile couples continue to be labeled with the diagnosis of idiopathic infertility or given descriptive diagnoses that do not provide a cause for their defect. For other individuals with a known etiology, effective cures are lacking, although their infertility is often bypassed with assisted reproductive technologies (ART), some accompanied by safety or ethical concerns. Certainly, progress in the field of reproduction has been realized in the twenty-first century with advances in the understanding of the regulation of fertility, with the production of over 400 mutant mouse models with a reproductive phenotype and with the promise of regenerative gonadal stem cells. Indeed, the past six years have witnessed a virtual explosion in the identification of gene mutations or polymorphisms that cause or are linked to human infertility. Translation of these findings to the clinic remains slow, however, as do new methods to diagnose and treat infertile couples. Additionally, new approaches to contraception remain elusive. Nevertheless, the basic and clinical advances in the understanding of the molecular controls of reproduction are impressive and will ultimately improve patient care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retinoid signaling determines germ cell fate in mice.

            Germ cells in the mouse embryo can develop as oocytes or spermatogonia, depending on molecular cues that have not been identified. We found that retinoic acid, produced by mesonephroi of both sexes, causes germ cells in the ovary to enter meiosis and initiate oogenesis. Meiosis is retarded in the fetal testis by the action of the retinoid-degrading enzyme CYP26B1, ultimately leading to spermatogenesis. In testes of Cyp26b1-knockout mouse embryos, germ cells enter meiosis precociously, as if in a normal ovary. Thus, precise regulation of retinoid levels during fetal gonad development provides the molecular control mechanism that specifies germ cell fate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Retinoic acid regulates sex-specific timing of meiotic initiation in mice.

              In mammals, meiosis is initiated at different time points in males and females, but the mechanism underlying this difference is unknown. Female germ cells begin meiosis during embryogenesis. In males, embryonic germ cells undergo G0/G1 mitotic cell cycle arrest, and meiosis begins after birth. In mice, the Stimulated by Retinoic Acid Gene 8 (Stra8) has been found to be required for the transition into meiosis in both female and male germ cells. Stra8 is expressed in embryonic ovaries just before meiotic initiation, whereas its expression in testes is first detected after birth. Here we examine the mechanism underlying the sex-specific timing of Stra8 expression and meiotic initiation in mice. Our work shows that signaling by retinoic acid (RA), an active derivative of vitamin A, is required for Stra8 expression and thereby meiotic initiation in embryonic ovaries. We also discovered that RA is sufficient to induce Stra8 expression in embryonic testes and in vitamin A-deficient adult testes in vivo. Finally, our results show that cytochrome p450 (CYP)-mediated RA metabolism prevents premature Stra8 expression in embryonic testes. Treatment with an inhibitor specific to RA-metabolizing enzymes indicates that a cytochrome p450 from the 26 family (CYP26) is responsible for delaying Stra8 expression in embryonic testes. Sex-specific regulation of RA signaling thus plays an essential role in meiotic initiation in embryonic ovaries and precludes its occurrence in embryonic testes. Because RA signaling regulates Stra8 expression in both embryonic ovaries and adult testes, this portion of the meiotic initiation pathway may be identical in both sexes.
                Bookmark

                Author and book information

                Book Chapter
                November 10 2011
                : 437-466
                10.1002/9781118140574.ch31
                ed38a9fb-18f6-4db2-9bb8-ee0f2efad5d3
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,653

                Cited by1