+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Validation of the RapidArc Delivery System Using a Volumetric Phantom as Per Task Group Report 119 of the American Association of Physicists in Medicine


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          This study validated the RapidArc (RA) delivery using a volumetric ArcCHECK phantom as per the guidelines proposed in Task Group Report 119 from the American Association of Physicists in Medicine Task group 119 (AAPM TG 119). This study also investigated the impact of the Acuros XB (AXB) algorithm in comparison to analytical anisotropic algorithm (AAA) on the RA dose calculations in the homogeneous medium of the ArcCHECK phantom.

          Materials and Methods:

          A volumetric ArcCHECK phantom along with AAPM TG 119 tests was used to evaluate the RA plans and verify the dose delivery for photon beam of 6 MV energy.


          The RA planning results were comparable and satisfied the planning criteria stated in the TG 119 report for all test cases. The average percentage gamma passing rates for the AAA-calculated plans were 98.5 (standard deviation [SD]: 0.6), 98.5 (SD: 1.3), and 98.1 (SD: 2.0) and for the AXB-calculated plans were 95.1 (SD: 1.8), 96.1 (SD: 1.3), and 94.0 (SD: 0.9) for the Clinac-iX (6 MV) and TrueBeam (TB)-STx (6 MV_filtered beam [FB] and 6 MV_flattening filter-free beam [FFFB]), respectively. For ion chamber measurements, the average percentage dose differences for the AAA-calculated plans were 1.5 (SD: 2.5), 2.7 (SD: 1.4), and 1.4(SD: 2.7) and for AXB-calculated plans were 2.3 (SD: 1.6), 3.2 (SD: 1.5), and 2.3 (SD: 2.0) for Clinac-iX (6 MV) and TB-STx (6 MV_FB and 6 MV_FFFB), respectively.


          Thus, the ArcCHECK can successfully be utilized for the validation of the RA delivery. The AXB has potential to perform dose calculations comparable to those of the AAA for RA plans in the homogeneous medium of the ArcCHECK phantom.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119.

          AAPM Task Group 119 has produced quantitative confidence limits as baseline expectation values for IMRT commissioning. A set of test cases was developed to assess the overall accuracy of planning and delivery of IMRT treatments. Each test uses contours of targets and avoidance structures drawn within rectangular phantoms. These tests were planned, delivered, measured, and analyzed by nine facilities using a variety of IMRT planning and delivery systems. Each facility had passed the Radiological Physics Center credentialing tests for IMRT. The agreement between the planned and measured doses was determined using ion chamber dosimetry in high and low dose regions, film dosimetry on coronal planes in the phantom with all fields delivered, and planar dosimetry for each field measured perpendicular to the central axis. The planar dose distributions were assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop confidence limits for the test results using the concept confidence limit = /mean/ + 1.96sigma. Other facilities can use the test protocol and results as a basis for comparison to this group. Locally derived confidence limits that substantially exceed these baseline values may indicate the need for improved IMRT commissioning.
            • Record: found
            • Abstract: found
            • Article: not found

            Volumetric modulated arc therapy: IMRT in a single gantry arc.

            In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved through image-guided positioning and plan adaptation have resulted in an increase in overall treatment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased monitor units (MU), and, in the case of tomotherapy, a slice-by-slice delivery. In order to maintain a similar level of patient throughput it will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry arc of up to 360 deg. The technique is similar to tomotherapy in that a full 360 deg of beam directions are available for optimization but is fundamentally different in that the entire dose volume is delivered in a single source rotation. The new technique is referred to as volumetric modulated arc therapy (VMAT). Multileaf collimator (MLC) leaf motion and number of MU per degree of gantry rotation is restricted during the optimization so that gantry rotation speed, leaf translation speed, and dose rate maxima do not excessively limit the delivery efficiency. During planning, investigators model continuous gantry motion by a coarse sampling of static gantry positions and fluence maps or MLC aperture shapes. The technique presented here is unique in that gantry and MLC position sampling is progressively increased throughout the optimization. Using the full gantry range will theoretically provide increased flexibility in generating highly conformal treatment plans. In practice, the additional flexibility is somewhat negated by the additional constraints placed on the amount of MLC leaf motion between gantry samples. A series of studies are performed that characterize the relationship between gantry and MLC sampling, dose modeling accuracy, and optimization time. Results show that gantry angle and MLC sample spacing as low as 1 deg and 0.5 cm, respectively, is desirable for accurate dose modeling. It is also shown that reducing the sample spacing dramatically reduces the ability of the optimization to arrive at a solution. The competing benefits of having small and large sample spacing are mutually realized using the progressive sampling technique described here. Preliminary results show that plans generated with VMAT optimization exhibit dose distributions equivalent or superior to static gantry IMRT. Timing studies have shown that the VMAT technique is well suited for on-line verification and adaptation with delivery times that are reduced to approximately 1.5-3 min for a 200 cGy fraction.
              • Record: found
              • Abstract: found
              • Article: not found

              Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy.

              C. X. Yu (1995)
              The desire to improve local tumour control and cure more cancer patients, coupled with advances in computer technology and linear accelerator design, has spurred the developments of three-dimensional conformal radiotherapy techniques. Optimized treatment plans, aiming to deliver high dose to the target while minimizing dose to the surrounding tissues, can be delivered with multiple fields each with spatially modulated beam intensities or with multiple-slice treatments. This paper introduces a new method, intensity-modulated arc therapy (IMAT), for delivering optimized treatment plans to improve the therapeutic ratio. It utilizes continuous gantry motion as in conventional arc therapy. Unlike conventional arc therapy, the field shape, which is conformed with the multileaf collimator, changes during gantry rotation. Arbitrary two-dimensional beam intensify distributions at different beam angles are delivered with multiple superimposing arcs. A system capable of delivering the IMAT has been implemented. An example is given that illustrates the feasibility of this new method. Advantages of this new technique over tomotherapy and other slice-based delivery schemes are also discussed.

                Author and article information

                J Med Phys
                J Med Phys
                Journal of Medical Physics
                Wolters Kluwer - Medknow (India )
                Apr-Jun 2019
                : 44
                : 2
                : 126-134
                [1 ]Department of Radiation Oncology, Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
                [2 ]Department of Applied Science and Humanities, Dr. A.P.J Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
                [3 ]Department of Applied Science and Humanities, Bundelkhand Institute of Engineering and Technology, Jhansi, Uttar Pradesh, India
                [4 ]Department of Applied Science, Amity School of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
                Author notes
                Address for correspondence: Mr. Lalit Kumar, C/O Dr. Girigesh Yadav, Department of Radiation Oncology, Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, Sector-5, Rohini, New Delhi - 110 085, India. E-mail: lalitk48@ 123456gmail.com
                Copyright: © 2019 Journal of Medical Physics

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                : 28 November 2018
                : 03 April 2019
                : 03 April 2019
                Technical Note

                Medical physics
                american association of physicists in medicine task group 119,acuros xb,arccheck,rapidarc


                Comment on this article