40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Genome sequence of the nematode C. elegans: a platform for investigating biology.

          (1999)
          The 97-megabase genomic sequence of the nematode Caenorhabditis elegans reveals over 19,000 genes. More than 40 percent of the predicted protein products find significant matches in other organisms. There is a variety of repeated sequences, both local and dispersed. The distinctive distribution of some repeats and highly conserved genes provides evidence for a regional organization of the chromosomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny.

            SEAVIEW and PHYLO_WIN are two graphic tools for X Windows-Unix computers dedicated to sequence alignment and molecular phylogenetics. SEAVIEW is a sequence alignment editor allowing manual or automatic alignment through an interface with CLUSTALW program. Alignment of large sequences with extensive length differences is made easier by a dot-plot-based routine. The PHYLO_WIN program allows phylogenetic tree building according to most usual methods (neighbor joining with numerous distance estimates, maximum parsimony, maximum likelihood), and a bootstrap analysis with any of them. Reconstructed trees can be drawn, edited, printed, stored, evaluated according to numerous criteria. Taxonomic species groups and sets of conserved regions can be defined by mouse and stored into sequence files, thus avoiding multiple data files. Both tools are entirely mouse driven. On-line help makes them easy to use. They are freely available by anonymous ftp at biom3.univ-lyon1.fr/pub/ mol_phylogeny or http:@acnuc.univ-lyon1.fr/, or by e-mail to galtier@biomserv.univ-lyon1.fr.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution.

              The selective pressure at the protein level is usually measured by the nonsynonymous/synonymous rate ratio (omega = dN/dS), with omega 1 indicating purifying (or negative) selection, neutral evolution, and diversifying (or positive) selection, respectively. The omega ratio is commonly calculated as an average over sites. As every functional protein has some amino acid sites under selective constraints, averaging rates across sites leads to low power to detect positive selection. Recently developed models of codon substitution allow the omega ratio to vary among sites and appear to be powerful in detecting positive selection in empirical data analysis. In this study, we used computer simulation to investigate the accuracy and power of the likelihood ratio test (LRT) in detecting positive selection at amino acid sites. The test compares two nested models: one that allows for sites under positive selection (with omega > 1), and another that does not, with the chi2 distribution used for significance testing. We found that use of the chi(2) distribution makes the test conservative, especially when the data contain very short and highly similar sequences. Nevertheless, the LRT is powerful. Although the power can be low with only 5 or 6 sequences in the data, it was nearly 100% in data sets of 17 sequences. Sequence length, sequence divergence, and the strength of positive selection also were found to affect the power of the LRT. The exact distribution assumed for the omega ratio over sites was found not to affect the effectiveness of the LRT.
                Bookmark

                Author and article information

                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                molbiolevol
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                July 2015
                13 March 2015
                13 March 2015
                : 32
                : 7
                : 1862-1879
                Affiliations
                1Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
                2Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
                Author notes
                *Corresponding author: E-mail: neumann@ 123456umbr.cas.cz .

                Associate editor: Stephen Wright

                Article
                msv070
                10.1093/molbev/msv070
                4476163
                25771197
                ed46df3c-91ec-4f6d-b4d2-057a50be7ac9
                © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 18
                Categories
                Discoveries

                Molecular biology
                centromere,cenh3,chromosome,centromere drive,adaptive evolution,gene duplication
                Molecular biology
                centromere, cenh3, chromosome, centromere drive, adaptive evolution, gene duplication

                Comments

                Comment on this article