21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Ranking System for Reference Libraries of DNA Barcodes: Application to Marine Fish Species from Portugal

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The increasing availability of reference libraries of DNA barcodes (RLDB) offers the opportunity to the screen the level of consistency in DNA barcode data among libraries, in order to detect possible disagreements generated from taxonomic uncertainty or operational shortcomings. We propose a ranking system to attribute a confidence level to species identifications associated with DNA barcode records from a RLDB. Here we apply the proposed ranking system to a newly generated RLDB for marine fish of Portugal.

          Methodology/Principal Findings

          Specimens (n = 659) representing 102 marine fish species were collected along the continental shelf of Portugal, morphologically identified and archived in a museum collection. Samples were sequenced at the barcode region of the cytochrome oxidase subunit I gene (COI-5P). Resultant DNA barcodes had average intra-specific and inter-specific Kimura-2-parameter distances (0.32% and 8.84%, respectively) within the range usually observed for marine fishes. All specimens were ranked in five different levels (A–E), according to the reliability of the match between their species identification and the respective diagnostic DNA barcodes. Grades A to E were attributed upon submission of individual specimen sequences to BOLD-IDS and inspection of the clustering pattern in the NJ tree generated. Overall, our study resulted in 73.5% of unambiguous species IDs (grade A), 7.8% taxonomically congruent barcode clusters within our dataset, but awaiting external confirmation (grade B), and 18.7% of species identifications with lower levels of reliability (grades C/E).

          Conclusion/Significance

          We highlight the importance of implementing a system to rank barcode records in RLDB, in order to flag taxa in need of taxonomic revision, or reduce ambiguities of discordant data. With increasing DNA barcode records publicly available, this cross-validation system would provide a metric of relative accuracy of barcodes, while enabling the continuous revision and annotation required in taxonomic work.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material.

          Procedures utilizing Chelex 100 chelating resin have been developed for extracting DNA from forensic-type samples for use with the PCR. The procedures are simple, rapid, involve no organic solvents and do not require multiple tube transfers for most types of samples. The extraction of DNA from semen and very small bloodstains using Chelex 100 is as efficient or more efficient than using proteinase K and phenol-chloroform extraction. DNA extracted from bloodstains seems less prone to contain PCR inhibitors when prepared by this method. The Chelex method has been used with amplification and typing at the HLA DQ alpha locus to obtain the DQ alpha genotypes of many different types of samples, including whole blood, bloodstains, seminal stains, buccal swabs, hair and post-coital samples. The results of a concordance study are presented in which the DQ alpha genotypes of 84 samples prepared using Chelex or using conventional phenol-chloroform extraction are compared. The genotypes obtained using the two different extraction methods were identical for all samples tested.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A plea for DNA taxonomy

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA barcode divergence among species and genera of birds and fishes.

              COI DNA barcoding is increasingly recognized as a significant new tool for the recognition and identification of animal species. Here, publicly available barcode data are compiled and analysed for birds (657 species) and fishes (1088 species). The proportion of species that cannot be barcode-distinguished by this marker is approximately 6.4% for birds and 2.1-2.5% for fishes. At all hierarchical taxonomic levels (species, genera, family, order, class), fish show greater mean COI divergence than birds. If two samples are barcode-identical, then for both birds and fishes, the probability that they are from the same species is 98-99%. The probability of conspecificity rapidly drops as divergence increases. At 2% COI divergence, this probability approximates to 1% for birds and 3% for fishes. The apparent difference between birds and fishes might partially reflect currently unrecognized cryptic species complexes in the latter. These probability estimates derive from pooled samples of birds and pooled samples of fishes, and will not apply in all situations. Recently evolved species complexes will have higher proportions of species that are barcode-identical. As barcode data accumulate, more refined statistical analyses will become possible. © 2009 Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                25 April 2012
                : 7
                : 4
                : e35858
                Affiliations
                [1 ]CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
                [2 ]INRB, IP/IPIMAR, Lisboa, Portugal
                [3 ]IMAR – Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
                [4 ]Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faculdade de Ciências e Tecnologias (FCT), Campus de Gambelas, Faro, Portugal
                [5 ]Museu Nacional de História Natural & Centro de Biologia Ambiental, Universidade de Lisboa, Lisboa, Portugal
                [6 ]Biodiversity Institute of Ontario University of Guelph, Guelph, Ontario, Canada
                [7 ]Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, Wales
                American Museum of Natural History, United States of America
                Author notes

                Conceived and designed the experiments: FOC ML DS GRC. Performed the experiments: FOC ML RM MHC MEC MC MJA. Analyzed the data: FOC ML DS. Contributed reagents/materials/analysis tools: FOC ML RM MHC MEC MC MJA DS GRC. Wrote the paper: FOC ML. Drafted the manuscript: FOC ML RM MHC MEC MC MJA DS GRC. All authors read and approved the final manuscript.

                Article
                PONE-D-11-15286
                10.1371/journal.pone.0035858
                3338485
                22558244
                ed4c0aeb-e9cc-433f-9e72-4cee16f61d87
                Costa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 August 2011
                : 27 March 2012
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Ecology
                Biodiversity
                Evolutionary Biology
                Evolutionary Systematics
                Taxonomy
                Animal Taxonomy
                Molecular Systematics
                Genetics
                Population Genetics
                Haplotypes
                Genomics
                Genome Databases
                Sequence Databases
                Marine Biology
                Zoology
                Animal Taxonomy
                Ichthyology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article