9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Changes Associated with the Evolutionary Transitions of Nostoc to a Plant Symbiont

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyanobacteria belonging to the genus Nostoc comprise free-living strains and also facultative plant symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here, we compared the genomes derived from 11 symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acids, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate l-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell walls. These compounds could function as C-sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 Ma, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Concerted and birth-and-death evolution of multigene families.

          Until around 1990, most multigene families were thought to be subject to concerted evolution, in which all member genes of a family evolve as a unit in concert. However, phylogenetic analysis of MHC and other immune system genes showed a quite different evolutionary pattern, and a new model called birth-and-death evolution was proposed. In this model, new genes are created by gene duplication and some duplicate genes stay in the genome for a long time, whereas others are inactivated or deleted from the genome. Later investigations have shown that most non-rRNA genes including highly conserved histone or ubiquitin genes are subject to this type of evolution. However, the controversy over the two models is still continuing because the distinction between the two models becomes difficult when sequence differences are small. Unlike concerted evolution, the model of birth-and-death evolution can give some insights into the origins of new genetic systems or new phenotypic characters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Statistical methods for detecting molecular adaptation.

            The past few years have seen the development of powerful statistical methods for detecting adaptive molecular evolution. These methods compare synonymous and nonsynonymous substitution rates in protein-coding genes, and regard a nonsynonymous rate elevated above the synonymous rate as evidence for darwinian selection. Numerous cases of molecular adaptation are being identified in various systems from viruses to humans. Although previous analyses averaging rates over sites and time have little power, recent methods designed to detect positive selection at individual sites and lineages have been successful. Here, we summarize recent statistical methods for detecting molecular adaptation, and discuss their limitations and possible improvements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimating the timing of early eukaryotic diversification with multigene molecular clocks.

              Although macroscopic plants, animals, and fungi are the most familiar eukaryotes, the bulk of eukaryotic diversity is microbial. Elucidating the timing of diversification among the more than 70 lineages is key to understanding the evolution of eukaryotes. Here, we use taxon-rich multigene data combined with diverse fossils and a relaxed molecular clock framework to estimate the timing of the last common ancestor of extant eukaryotes and the divergence of major clades. Overall, these analyses suggest that the last common ancestor lived between 1866 and 1679 Ma, consistent with the earliest microfossils interpreted with confidence as eukaryotic. During this interval, the Earth's surface differed markedly from today; for example, the oceans were incompletely ventilated, with ferruginous and, after about 1800 Ma, sulfidic water masses commonly lying beneath moderately oxygenated surface waters. Our time estimates also indicate that the major clades of eukaryotes diverged before 1000 Ma, with most or all probably diverging before 1200 Ma. Fossils, however, suggest that diversity within major extant clades expanded later, beginning about 800 Ma, when the oceans began their transition to a more modern chemical state. In combination, paleontological and molecular approaches indicate that long stems preceded diversification in the major eukaryotic lineages.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                May 2018
                15 March 2018
                15 March 2018
                : 35
                : 5
                : 1160-1175
                Affiliations
                [1 ]Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
                [2 ]Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT–The Arctic University of Norway, Tromsø, Norway
                [3 ]US Department of Energy Joint Genome Institute, Walnut Creek, CA
                [4 ]Department of Chemistry, Faculty of Science and Technology, UiT–The Arctic University of Norway, Tromsø, Norway
                [5 ]Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA
                [6 ]Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA
                Author notes
                Corresponding author: E-mail: ulla.rasmussen@ 123456su.se .

                The data have been deposited in https://gold.jgi.doe.gov/studies?id=Gs0110198, and GenBank with accession numbers NNBT00000000, NNBU00000000, NNBV00000000, and LSSA00000000.

                Author information
                http://orcid.org/0000-0001-7329-3674
                http://orcid.org/0000-0002-5990-2063
                Article
                msy029
                10.1093/molbev/msy029
                5913679
                29554291
                ed4ca10b-46e8-4ac1-96c9-7545f1795d90
                © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 16
                Categories
                Discoveries

                Molecular biology
                cyanobacteria,symbiosis,evolution,plant–microbe interaction
                Molecular biology
                cyanobacteria, symbiosis, evolution, plant–microbe interaction

                Comments

                Comment on this article