74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The emergence of transcriptional identity in somatosensory neurons

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over a dozen morphologically and physiologically distinct primary somatosensory neuron subtypes report salient features of our internal and external environments. How specialized gene expression programs emerge during development to endow somatosensory neuron subtypes with their unique properties is unclear. To assess the developmental progression of transcriptional maturation of each principal somatosensory neuron subtype, we generated a transcriptomic atlas of cells traversing the primary somatosensory neuron lineage. We found that somatosensory neurogenesis gives rise to neurons in a transcriptionally unspecialized state, characterized by co-expression of transcription factors (TFs) that become restricted to select subtypes as development proceeds. Single cell transcriptomic analyses of sensory neurons from mutant mice lacking TFs suggest that these broad-to-restricted TFs coordinate subtype-specific gene expression programs in the subtypes where their expression is maintained. We also define a role for neuronal targets for TF expression as disruption of the prototypic target-derived neurotrophic factor NGF leads to aberrant subtype-restricted patterns of TF expression. Our findings support a model in which cues emanating from intermediate and final target fields promote neuronal diversification in part by transitioning cells from a transcriptionally unspecialized state to transcriptionally distinct subtypes through modulating selection of subtype-restricted TFs.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The menthol receptor TRPM8 is the principal detector of environmental cold.

          Sensory nerve fibres can detect changes in temperature over a remarkably wide range, a process that has been proposed to involve direct activation of thermosensitive excitatory transient receptor potential (TRP) ion channels. One such channel--TRP melastatin 8 (TRPM8) or cold and menthol receptor 1 (CMR1)--is activated by chemical cooling agents (such as menthol) or when ambient temperatures drop below approximately 26 degrees C, suggesting that it mediates the detection of cold thermal stimuli by primary afferent sensory neurons. However, some studies have questioned the contribution of TRPM8 to cold detection or proposed that other excitatory or inhibitory channels are more critical to this sensory modality in vivo. Here we show that cultured sensory neurons and intact sensory nerve fibres from TRPM8-deficient mice exhibit profoundly diminished responses to cold. These animals also show clear behavioural deficits in their ability to discriminate between cold and warm surfaces, or to respond to evaporative cooling. At the same time, TRPM8 mutant mice are not completely insensitive to cold as they avoid contact with surfaces below 10 degrees C, albeit with reduced efficiency. Thus, our findings demonstrate an essential and predominant role for TRPM8 in thermosensation over a wide range of cold temperatures, validating the hypothesis that TRP channels are the principal sensors of thermal stimuli in the peripheral nervous system.
            • Record: found
            • Abstract: found
            • Article: not found

            Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo

            High-throughput mapping of cellular differentiation hierarchies from single-cell data promises to empower systematic interrogations of vertebrate development and disease. Here, we applied single-cell RNA sequencing to >92,000 cells from zebrafish embryos during the first day of development. Using a graph-based approach, we mapped a cell state landscape that describes axis patterning, germ layer formation, and organogenesis. We tested how clonally related cells traverse this landscape by developing a transposon-based barcoding approach ("TracerSeq") for reconstructing single-cell lineage histories. Clonally related cells were often restricted by the state landscape, including a case in which two independent lineages converge on similar fates. Cell fates remained restricted to this landscape in chordin-deficient embryos. We provide web-based resources for further analysis of the single-cell data.
              • Record: found
              • Abstract: found
              • Article: not found

              The functional organization of cutaneous low-threshold mechanosensory neurons.

              Innocuous touch of the skin is detected by distinct populations of neurons, the low-threshold mechanoreceptors (LTMRs), which are classified as Aβ-, Aδ-, and C-LTMRs. Here, we report genetic labeling of LTMR subtypes and visualization of their relative patterns of axonal endings in hairy skin and the spinal cord. We found that each of the three major hair follicle types of trunk hairy skin (guard, awl/auchene, and zigzag hairs) is innervated by a unique and invariant combination of LTMRs; thus, each hair follicle type is a functionally distinct mechanosensory end organ. Moreover, the central projections of Aβ-, Aδ-, and C-LTMRs that innervate the same or adjacent hair follicles form narrow LTMR columns in the dorsal horn. These findings support a model of mechanosensation in which the activities of Aβ-, Aδ-, and C-LTMRs are integrated within dorsal horn LTMR columns and processed into outputs that underlie the perception of myriad touch sensations. Copyright © 2011 Elsevier Inc. All rights reserved.

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                January 8 2020
                Article
                10.1038/s41586-019-1900-1
                7307422
                31915380
                ed511776-7128-4c63-88f3-4efd934722b1
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                Related Documents Log