23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A role for the extended amygdala in the fear-enhancing effects of acute selective serotonin reuptake inhibitor treatment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Selective serotonin reuptake inhibitors (SSRIs) are reported to exacerbate symptoms of anxiety when treatment is initiated. These clinical findings have been extended to animal models wherein SSRIs also potentiate anxiety and fear learning, which depend on the amygdala. Yet, little is known about the role of specific amygdalar circuits in these acute effects of SSRIs. Here, we first confirmed that a single injection of fluoxetine 1 h before auditory fear conditioning potentiated fear memory in rats. To probe the neural substrates underlying this enhancement, we analyzed the expression patterns of the immediate early gene, Arc (activity-regulated cytoskeleton-associated protein). Consistent with previous reports, fear conditioning induced Arc protein expression in the lateral and basal amygdala. However, this was not enhanced further by pre-treatment with fluoxetine. Instead, fluoxetine significantly enhanced expression of Arc in the central amygdala (CeA) and the bed nucleus of the stria terminalis (BNST). Next, we tested whether direct targeted infusions of fluoxetine into the CeA, or BNST, leads to the same fear-potentiating effect. Strikingly, direct infusion of fluoxetine into the BNST, but not the CeA, was sufficient to enhance fear memory. Moreover, this behavioral effect was also accompanied by robust Arc expression in the CeA, similar to the systemic injection. Our results identify a novel role for the BNST in the acute fear-enhancing effects of SSRIs. These findings highlight the need to look beyond the traditional focus on input nuclei of the amygdala and add to accumulating evidence implicating these microcircuits in gating fear and anxiety.

          Related collections

          Most cited references 69

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.

          Recent studies suggest that stress-induced atrophy and loss of hippocampal neurons may contribute to the pathophysiology of depression. The aim of this study was to investigate the effect of antidepressants on hippocampal neurogenesis in the adult rat, using the thymidine analog bromodeoxyuridine (BrdU) as a marker for dividing cells. Our studies demonstrate that chronic antidepressant treatment significantly increases the number of BrdU-labeled cells in the dentate gyrus and hilus of the hippocampus. Administration of several different classes of antidepressant, but not non-antidepressant, agents was found to increase BrdU-labeled cell number, indicating that this is a common and selective action of antidepressants. In addition, upregulation of the number of BrdU-labeled cells is observed after chronic, but not acute, treatment, consistent with the time course for the therapeutic action of antidepressants. Additional studies demonstrated that antidepressant treatment increases the proliferation of hippocampal cells and that these new cells mature and become neurons, as determined by triple labeling for BrdU and neuronal- or glial-specific markers. These findings raise the possibility that increased cell proliferation and increased neuronal number may be a mechanism by which antidepressant treatment overcomes the stress-induced atrophy and loss of hippocampal neurons and may contribute to the therapeutic actions of antidepressant treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stress, memory and the amygdala.

            Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified neural correlates of stress-induced modulation of amygdala structure and function - from cellular mechanisms to their behavioural consequences. The unique features of stress-induced plasticity in the amygdala, in association with changes in other brain regions, could have long-term consequences for cognitive performance and pathological anxiety exhibited in people with affective disorders.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The role of the amygdala in fear and anxiety.

               J. Davis (1991)
                Bookmark

                Author and article information

                Journal
                Transl Psychiatry
                Transl Psychiatry
                Translational Psychiatry
                Nature Publishing Group
                2158-3188
                January 2013
                15 January 2013
                1 January 2013
                : 3
                : 1
                : e209
                Affiliations
                [1 ]National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore, India
                [2 ]Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University , New York, NY, USA
                [3 ]Biology Department, Barnard College, Columbia University , New York, NY, USA
                Author notes
                [* ]National Centre for Biological Sciences, GKVK Campus , Bellary Road, Bangalore 560065, India. E-mail: shona@ 123456ncbs.res.in
                [4]

                SR and NSB share first authorship.

                Article
                tp2012137
                10.1038/tp.2012.137
                3566718
                23321806
                Copyright © 2013 Macmillan Publishers Limited

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                Categories
                Original Article

                Comments

                Comment on this article