14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Podocyte Autophagy: A Potential Therapeutic Target to Prevent the Progression of Diabetic Nephropathy

      review-article
      1 , 1 , 1 , 1 , 2 , *
      Journal of Diabetes Research
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic nephropathy (DN), a leading cause of end-stage renal disease (ESRD), becomes a worldwide problem. Ultrastructural changes of the glomerular filtration barrier, especially the pathological changes of podocytes, lead to proteinuria in patients with diabetes. Podocytes are major components of glomerular filtration barrier, lining outside of the glomerular basement membrane (GBM) to maintain the permeability of the GBM. Autophagy is a high conserved cellular process in lysosomes including impaired protein, cell organelles, and other contents in the cytoplasm. Recent studies suggest that activation of autophagy in podocytes may be a potential therapy to prevent the progression of DN. Here, we review the mechanisms of autophagy in podocytes and discuss the current studies about alleviating proteinuria via activating podocyte autophagy.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Pathologic classification of diabetic nephropathy.

          Although pathologic classifications exist for several renal diseases, including IgA nephropathy, focal segmental glomerulosclerosis, and lupus nephritis, a uniform classification for diabetic nephropathy is lacking. Our aim, commissioned by the Research Committee of the Renal Pathology Society, was to develop a consensus classification combining type1 and type 2 diabetic nephropathies. Such a classification should discriminate lesions by various degrees of severity that would be easy to use internationally in clinical practice. We divide diabetic nephropathy into four hierarchical glomerular lesions with a separate evaluation for degrees of interstitial and vascular involvement. Biopsies diagnosed as diabetic nephropathy are classified as follows: Class I, glomerular basement membrane thickening: isolated glomerular basement membrane thickening and only mild, nonspecific changes by light microscopy that do not meet the criteria of classes II through IV. Class II, mesangial expansion, mild (IIa) or severe (IIb): glomeruli classified as mild or severe mesangial expansion but without nodular sclerosis (Kimmelstiel-Wilson lesions) or global glomerulosclerosis in more than 50% of glomeruli. Class III, nodular sclerosis (Kimmelstiel-Wilson lesions): at least one glomerulus with nodular increase in mesangial matrix (Kimmelstiel-Wilson) without changes described in class IV. Class IV, advanced diabetic glomerulosclerosis: more than 50% global glomerulosclerosis with other clinical or pathologic evidence that sclerosis is attributable to diabetic nephropathy. A good interobserver reproducibility for the four classes of DN was shown (intraclass correlation coefficient = 0.84) in a test of this classification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growing roles for the mTOR pathway.

            The mammalian TOR (mTOR) pathway is a key regulator of cell growth and proliferation and increasing evidence suggests that its deregulation is associated with human diseases, including cancer and diabetes. The mTOR pathway integrates signals from nutrients, energy status and growth factors to regulate many processes, including autophagy, ribosome biogenesis and metabolism. Recent work identifying two structurally and functionally distinct mTOR-containing multiprotein complexes and TSC1/2, rheb, and AMPK as upstream regulators of mTOR is beginning to reveal how mTOR can sense diverse signals and produce a myriad of responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The mTOR Signalling Pathway in Human Cancer

              The conserved serine/threonine kinase mTOR (the mammalian target of rapamycin), a downstream effector of the PI3K/AKT pathway, forms two distinct multiprotein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to rapamycin, activates S6K1 and 4EBP1, which are involved in mRNA translation. It is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals, and essential signalling pathways, such as PI3K, MAPK and AMPK, in order to control cell growth, proliferation and survival. mTORC2 is considered resistant to rapamycin and is generally insensitive to nutrients and energy signals. It activates PKC-α and AKT and regulates the actin cytoskeleton. Deregulation of multiple elements of the mTOR pathway (PI3K amplification/mutation, PTEN loss of function, AKT overexpression, and S6K1, 4EBP1 and eIF4E overexpression) has been reported in many types of cancers, particularly in melanoma, where alterations in major components of the mTOR pathway were reported to have significant effects on tumour progression. Therefore, mTOR is an appealing therapeutic target and mTOR inhibitors, including the rapamycin analogues deforolimus, everolimus and temsirolimus, are submitted to clinical trials for treating multiple cancers, alone or in combination with inhibitors of other pathways. Importantly, temsirolimus and everolimus were recently approved by the FDA for the treatment of renal cell carcinoma, PNET and giant cell astrocytoma. Small molecules that inhibit mTOR kinase activity and dual PI3K-mTOR inhibitors are also being developed. In this review, we aim to survey relevant research, the molecular mechanisms of signalling, including upstream activation and downstream effectors, and the role of mTOR in cancer, mainly in melanoma.
                Bookmark

                Author and article information

                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi
                2314-6745
                2314-6753
                2017
                23 April 2017
                : 2017
                : 3560238
                Affiliations
                1Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
                2Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
                Author notes

                Academic Editor: Secundino Cigarran

                Author information
                http://orcid.org/0000-0001-9103-3227
                http://orcid.org/0000-0001-9719-4187
                Article
                10.1155/2017/3560238
                5420432
                28512641
                ed56c73c-b674-46e6-b217-59da6f531a7d
                Copyright © 2017 Na Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 November 2016
                : 20 February 2017
                Funding
                Funded by: Key Discipline Construction Project of Pudong Health Bureau of Shanghai
                Award ID: PWZx201406
                Funded by: US National Institutes of Health
                Award ID: 2R01DK08506505A1
                Funded by: National Natural Science Foundation of China
                Award ID: 81670623
                Award ID: 81470920
                Award ID: 81270778
                Award ID: 81200492
                Award ID: 81470991
                Award ID: 81670690
                Categories
                Review Article

                Comments

                Comment on this article