6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biomimetic Design of Mitochondria‐Targeted Hybrid Nanozymes as Superoxide Scavengers

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.

          Nanoparticles containing magnetic materials, such as magnetite (Fe3O4), are particularly useful for imaging and separation techniques. As these nanoparticles are generally considered to be biologically and chemically inert, they are typically coated with metal catalysts, antibodies or enzymes to increase their functionality as separation agents. Here, we report that magnetite nanoparticles in fact possess an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, which are widely used to oxidize organic substrates in the treatment of wastewater or as detection tools. Based on this finding, we have developed a novel immunoassay in which antibody-modified magnetite nanoparticles provide three functions: capture, separation and detection. The stability, ease of production and versatility of these nanoparticles makes them a powerful tool for a wide range of potential applications in medicine, biotechnology and environmental chemistry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)

            An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field. Nanozymes are nanomaterials with enzyme-like characteristics ( Chem. Soc. Rev. , 2013, 42 , 6060–6093). They have been developed to address the limitations of natural enzymes and conventional artificial enzymes. Along with the significant advances in nanotechnology, biotechnology, catalysis science, and computational design, great progress has been achieved in the field of nanozymes since the publication of the above-mentioned comprehensive review in 2013. To highlight these achievements, this review first discusses the types of nanozymes and their representative nanomaterials, together with the corresponding catalytic mechanisms whenever available. Then, it summarizes various strategies for modulating the activity and selectivity of nanozymes. After that, the broad applications from biomedical analysis and imaging to theranostics and environmental protection are covered. Finally, the current challenges faced by nanozymes are outlined and the future directions for advancing nanozyme research are suggested. The current review can help researchers know well the current status of nanozymes and may catalyze breakthroughs in this field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.

              Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                March 2021
                January 22 2021
                March 2021
                : 33
                : 9
                : 2006570
                Affiliations
                [1 ]Key Laboratory of Bioactive Materials for the Ministry of Education College of Life Sciences State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300071 China
                [2 ]Department of Physiology and Pathophysiology Tianjin Medical University Tianjin 300070 China
                [3 ]School of Medicine Nankai University Tianjin 300071 China
                [4 ]Joint Laboratory of Nanozymes College of Life Sciences Nankai University Tianjin 300071 China
                [5 ]CAS Engineering Laboratory for Nanozymes Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
                Article
                10.1002/adma.202006570
                33480459
                ed6172a4-f60d-4fa2-a293-08be1f41808f
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article