8
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cyclic AMP mediates ovine cumulus–oocyte gap junctional function via balancing connexin 43 expression and phosphorylation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gap junction channels in cumulus–oocyte complexes (COCs) enable the transmission and communication of small molecular signals between adjacent cells, such as cAMP. However, the regulation of gap junction function (GJF) by cAMP and the underlying mechanisms involved are not fully clarified. This study investigated the effect of cAMP on connexin 43 (CX43) expression and GJF in ovine COCs using immunofluorescence, quantitative real-time PCR (qRT-PCR), western blotting, and GJF detection. The CX43 was only found in the cumulus cells (CCs) side of ovine COC. The intra-oocyte cAMP showed a significant increase at 30 min, while the intra-CC cAMP exhibited two peaks at 10 min and 1 h during in vitro maturation (IVM). Phosphorylated CX43 protein exhibited an immediate increase at 10 min, and CX43 protein displayed two peaks at 10 min and 1 h during IVM. The duration of pre-IVM exposure to forskolin and IBMX significantly enhanced phosphorylated and total CX43, as well as Gja1 and Creb genes, for 10 min; these effects were counteracted by Rp-cAMP. Both pre-IVM with forskolin and IBMX for 1 h and the GJF and CX43/p-CX43 ratio were elevated. The closure of gap junction channels caused by phosphorylated CX43 to prevent cAMP outflow from oocytes in early IVM of COC. Cyclic AMP upregulated phosphorylated and total CX43 via genomic and non-genomic pathways, but its functional regulation was dependent on the balance of the two proteins. This study provides a new insight into the regulatory mechanism between cAMP and GJF, which would improve IVM in animal and clinical research.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes.

          Oocyte in vitro maturation (IVM) reduces the need for gonadotrophin-induced ovarian hyperstimulation and its associated health risks but the unacceptably low conception/pregnancy rates have limited its clinical uptake. We report the development of a novel in vitro simulated physiological oocyte maturation (SPOM) system. Bovine or mouse cumulus-oocyte complexes (COCs) were treated with cAMP modulators for the first 1-2 h in vitro (pre-IVM), increasing COC cAMP levels ∼100-fold. To maintain oocyte cAMP levels and prevent precocious oocyte maturation, COCs were treated during IVM with an oocyte-specific phosphodiesterase inhibitor and simultaneously induced to mature with FSH. Using SPOM, the pre-IVM and IVM treatments synergized to increase bovine COC gap-junctional communication and slow meiotic progression (both P < 0.05 versus control), extending the normal IVM interval by 6 h in bovine and 4 h in mouse. FSH was required to complete maturation and this required epidermal growth factor signalling. These effects on COC had profound consequences for oocyte developmental potential. In serum-free conditions, SPOM increased bovine blastocyst yield (69 versus 27%) and improved blastocyst quality (184 versus 132 blastomeres; both P < 0.05 versus standard IVM). In mice, SPOM increased (all P < 0.05) blastocyst rate (86 versus 55%; SPOM versus control), implantation rate (53 versus 28%), fetal yield (26 versus 8%) and fetal weight (0.9 versus 0.5 g) to levels matching those of in vivo matured oocytes (conventional IVF). SPOM is a new approach to IVM, mimicing some characteristics of oocyte maturation in vivo and substantially improving oocyte developmental outcomes. Adaption of SPOM for clinical application should have significant implications for infertility management and bring important benefits to patients.
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals.

            Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases that are widely distributed in eukaryotic cells. Studies in the last decade revealed that MAPK cascade plays pivotal roles in regulating the meiotic cell cycle progression of oocytes. In mammalian species, activation of MAPK in cumulus cells is necessary for gonadotropin-induced meiotic resumption of oocytes, while MAPK activation is not required for spontaneous meiotic resumption. After germinal vesicle breakdown (GVBD), MAPK is involved in the regulation of microtubule organization and meiotic spindle assembly. The activation of this kinase is essential for the maintenance of metaphase II arrest, while its inactivation is a prerequisite for pronuclear formation after fertilization or parthenogenetic activation. MAPK cascade interacts extensively with other protein kinases such as maturation-promoting factor, protein kinase A, protein kinase C, and calmodulin-dependent protein kinase II, as well as with protein phosphatases in oocyte meiotic cell cycle regulation. The cross talk between MAPK cascade and other protein kinases is discussed. The review also addresses unsolved problems and discusses future directions.
              • Record: found
              • Abstract: found
              • Article: not found

              Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse.

              The ovarian follicle in mammals is a functional syncytium, with the oocyte being coupled with the surrounding cumulus granulosa cells, and the cumulus cells being coupled with each other and with the mural granulosa cells, via gap junctions. The gap junctions coupling granulosa cells in mature follicles contain several different connexins (gap junction channel proteins), including connexins 32, 43, and 45. Connexin43 immunoreactivity can be detected from the onset of folliculogenesis just after birth and persists through ovulation. In order to assess the importance of connexin43 gap junctions for postnatal folliculogenesis, we grafted ovaries from late gestation mouse fetuses or newborn pups lacking connexin43 (Gja1(-)/Gja1(-)) into the kidney capsules of adult females and allowed them to develop for up to 3 weeks (this was necessitated by the neonatal lethality caused by the mutation). By the end of the graft period, tertiary (antral) follicles had developed in grafted normal (wild-type or heterozygote) ovaries. Most follicles in Gja1(-)/Gja1(-) ovaries, however, failed to become multilaminar, with the severity of the effect depending on strain background. Dye transfer experiments indicated that intercellular coupling between granulosa cells is reduced, but not abolished, in the absence of connexin43, consistent with the presence of additional connexins. These results suggest that coupling between granulosa cells mediated specifically by connexin43 channels is required for continued follicular growth. Measurements of oocyte diameters revealed that oocyte growth in mutant follicles is retarded, but not arrested, despite the arrest of folliculogenesis. The mutant follicles are morphologically abnormal: the zona pellucida is poorly developed, the cytoplasm of both granulosa cells and oocytes is vacuolated, and cortical granules are absent from the oocytes. Correspondingly, the mutant oocytes obtained from 3-week grafts failed to undergo meiotic maturation and could not be fertilized, although half of the wild-type oocytes from 3-week grafted ovaries could be fertilized. We conclude that connexin43-containing gap junction channels are required for expansion of the granulosa cell population during the early stages of follicular development and that failure of the granulosa cell layers to develop properly has severe consequences for the oocyte. Copyright 2001 Academic Press.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                12 October 2023
                18 September 2023
                01 November 2023
                : 12
                : 11
                : e230337
                Affiliations
                [1 ]College of Veterinary Medicine , Inner Mongolia Agricultural University, Hohhot, PR China
                [2 ]Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities , Inner Mongolia Agricultural University, Hohhot, PR China
                [3 ]Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Hohhot, PR China
                [4 ]National Center of Technology Innovation for Dairy Industry , Hohhot, PR China
                [5 ]Animal Genetic Breeding and Reproduction Research Center , Hetao College, Bayannur, PR China
                Author notes
                Correspondence should be addressed to H Li or G Wang: navy1973@ 123456imau.edu.cn or wanggui505@ 123456163.com
                Author information
                http://orcid.org/0000-0001-7165-1423
                Article
                EC-23-0337
                10.1530/EC-23-0337
                10620458
                37855365
                ed767708-b2e0-48de-a43e-9cab1c6aed8e
                © the author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 03 September 2023
                : 18 September 2023
                Categories
                Research

                ovine cumulus–oocyte complexes,cyclic adenosine monophosphate,connexin 43,protein phosphorylation,gap junctional function

                Comments

                Comment on this article

                Related Documents Log