20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sweet taste preferences are partly genetically determined: identification of a trait locus on chromosome 16.

      The American Journal of Clinical Nutrition
      Adolescent, Adult, Aged, Chromosomes, Human, Pair 16, genetics, DNA, chemistry, Female, Food Preferences, Genotype, Humans, Lod Score, Male, Microsatellite Repeats, Middle Aged, Propylthiouracil, Quantitative Trait Loci, Taste, Test Anxiety Scale

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Humans have an innate preference for sweet taste, but the degree of liking for sweet foods varies individually. The proportion of inherited sweet taste preference was studied. A genome-wide linkage analysis was performed to locate the underlying genetic elements in the genome. A total of 146 subjects (32% men, 68% women) aged 18-78 y from 26 Finnish families evaluated the intensity and pleasantness of 3 suprathreshold solutions of sucrose (3.0%, 7.5%, and 18.75%) and plain water and the intensity of filter paper impregnated with 6-n-propylthiouracil (PROP). The subjects also reported the pleasantness and the use frequency of 5 sweet foods (chocolate, candy, ice cream, sweet desserts, and sweet pastry) and completed a food-behavior questionnaire that measured their craving for sweet foods. Of the chemosensory functions, the pleasantness rating of the strongest (18.75%) sucrose solution and the intensity rating of PROP yielded the highest heritability estimates (41% and 66%, respectively). The pleasantness and the use frequency of sweet foods (both variables calculated as a mean of ratings for 5 food items) and the craving for sweet foods showed significant heritability (40%, 50%, and 31%, respectively). A logarithm of odds score of 3.5 (P=0.00003) was detected for use frequency of sweet foods on chromosome 16p11.2 (marker D16S753). Sweet taste preferences are partly inherited. Chromosome 16p11.2 may harbor genetic variations that affect the consumption of sweet foods.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Human receptors for sweet and umami taste.

          The three members of the T1R class of taste-specific G protein-coupled receptors have been hypothesized to function in combination as heterodimeric sweet taste receptors. Here we show that human T1R2/T1R3 recognizes diverse natural and synthetic sweeteners. In contrast, human T1R1/T1R3 responds to the umami taste stimulus l-glutamate, and this response is enhanced by 5'-ribonucleotides, a hallmark of umami taste. The ligand specificities of rat T1R2/T1R3 and T1R1/T1R3 correspond to those of their human counterparts. These findings implicate the T1Rs in umami taste and suggest that sweet and umami taste receptors share a common subunit.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The receptors for mammalian sweet and umami taste.

            Sweet and umami (the taste of monosodium glutamate) are the main attractive taste modalities in humans. T1Rs are candidate mammalian taste receptors that combine to assemble two heteromeric G-protein-coupled receptor complexes: T1R1+3, an umami sensor, and T1R2+3, a sweet receptor. We now report the behavioral and physiological characterization of T1R1, T1R2, and T1R3 knockout mice. We demonstrate that sweet and umami taste are strictly dependent on T1R-receptors, and show that selective elimination of T1R-subunits differentially abolishes detection and perception of these two taste modalities. To examine the basis of sweet tastant recognition and coding, we engineered animals expressing either the human T1R2-receptor (hT1R2), or a modified opioid-receptor (RASSL) in sweet cells. Expression of hT1R2 in mice generates animals with humanized sweet taste preferences, while expression of RASSL drives strong attraction to a synthetic opiate, demonstrating that sweet cells trigger dedicated behavioral outputs, but their tastant selectivity is determined by the nature of the receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissociation of neural representation of intensity and affective valuation in human gustation.

              We used a 2 x 2 factorial design to dissociate regions responding to taste intensity and taste affective valence. Two intensities each of a pleasant and unpleasant taste were presented to subjects during event-related fMRI scanning. The cerebellum, pons, middle insula, and amygdala responded to intensity irrespective of valence. In contrast, valence-specific responses were observed in anterior insula/operculum extending into the orbitofrontal cortex (OFC). The right caudolateral OFC responded preferentially to pleasant compared to unpleasant taste, irrespective of intensity, and the left dorsal anterior insula/operculuar region responded preferentially to unpleasant compared to pleasant tastes equated for intensity. Responses best characterized as an interaction between intensity and pleasantness were also observed in several limbic regions. These findings demonstrate a functional segregation within the human gustatory system. They also show that amygdala activity may be driven by stimulus intensity irrespective of valence, casting doubt upon the notion that the amygdala responds preferentially to negative stimuli.
                Bookmark

                Author and article information

                Comments

                Comment on this article