5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A novel sustainable approach for the extraction of value-added compounds from Hibiscus sabdariffa L. calyces by natural deep eutectic solvents

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Deep eutectic solvents (DESs) and their applications.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural deep eutectic solvents as new potential media for green technology.

            Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study

              This collaborative study was conducted to determine the total monomeric anthocyanin concentration by the pH differential method, which is a rapid and simple spectrophotometric method based on the anthocyanin structural transformation that occurs with a change in pH (colored at pH 1.0 and colorless at pH 4.5). Eleven collaborators representing commercial laboratories, academic institutions, and government laboratories participated. Seven Youden pair materials representing fruit juices, beverages, natural colorants, and wines were tested. The repeatability relative standard deviation (RSDr) varied from 1.06 to 4.16%. The reproducibility relative standard deviation (RSDR) ranged from 2.69 to 10.12%. The HorRat values were ≤1.33 for all materials. The Study Director recommends that the method be adopted Official First Action.
                Bookmark

                Author and article information

                Journal
                Food Research International
                Food Research International
                Elsevier BV
                09639969
                November 2020
                November 2020
                : 137
                : 109646
                Article
                10.1016/j.foodres.2020.109646
                33233225
                ed7749d4-8b7f-4d51-9ca2-5d26295cf664
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article