22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polyhydroxyalkanoate‐associated phasins as phylogenetically heterogeneous, multipurpose proteins

      review-article
      1 , , 1 ,
      Microbial Biotechnology
      John Wiley and Sons Inc.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Polyhydroxyalkanoates ( PHAs) are natural polyesters of increasing biotechnological importance that are synthesized by many prokaryotic organisms as carbon and energy storage compounds in limiting growth conditions. PHAs accumulate intracellularly in form of inclusion bodies that are covered with a proteinaceous surface layer (granule‐associated proteins or GAPs) conforming a network‐like surface of structural, metabolic and regulatory polypeptides, and configuring the PHA granules as complex and well‐organized subcellular structures that have been designated as ‘carbonosomes’. GAPs include several enzymes related to PHA metabolism (synthases, depolymerases and hydroxylases) together with the so‐called phasins, an heterogeneous group of small‐size proteins that cover most of the PHA granule and that are devoid of catalytic functions but nevertheless play an essential role in granule structure and PHA metabolism. Structurally, phasins are amphiphilic proteins that shield the hydrophobic polymer from the cytoplasm. Here, we summarize the characteristics of the different phasins identified so far from PHA producer organisms and highlight the diverse opportunities that they offer in the Biotechnology field.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.

          Polyhydroxyalkanoates (PHAs), of which polyhydroxybutyrate (PHB) is the most abundant, are bacterial carbon and energy reserve materials of widespread occurrence. They are composed of 3-hydroxyacid monomer units and exist as a small number of cytoplasmic granules per cell. The properties of the C4 homopolymer PHB as a biodegradable thermoplastic first attracted industrial attention more than 20 years ago. Copolymers of C4 (3-hydroxybutyrate [3HB]) and C5 (3-hydroxyvalerate [3HV]) monomer units have modified physical properties; e.g., the plastic is less brittle than PHB, whereas PHAs containing C8 to C12 monomers behave as elastomers. This family of materials is the centre of considerable commercial interest, and 3HB-co-3HV copolymers have been marketed by ICI plc as Biopol. The known polymers exist as 2(1) helices with the fiber repeat decreasing from 0.596 nm for PHB to about 0.45 nm for C8 to C10 polymers. Novel copolymers with a backbone of 3HB and 4HB have been obtained. The native granules contain noncrystalline polymer, and water may possibly act as a plasticizer. Although the biosynthesis and regulation of PHB are generally well understood, the corresponding information for the synthesis of long-side-chain PHAs from alkanes, alcohols, and organic acids is still incomplete. The precise mechanisms of action of the polymerizing and depolymerizing enzymes also remain to be established. The structural genes for the three key enzymes of PHB synthesis from acetyl coenzyme A in Alcaligenes eutrophus have been cloned, sequenced, and expressed in Escherichia coli. Polymer molecular weights appear to be species specific. The factors influencing the commercial choice of organism, substrate, and isolation process are discussed. The physiological functions of PHB as a reserve material and in symbiotic nitrogen fixation and its presence in bacterial plasma membranes and putative role in transformability and calcium signaling are also considered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic.

            Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate.

              Polyhydroxyalkanoates (PHAs) comprise a large class of polyesters that are synthesized by many bacteria as an intracellular carbon and energy compound. Analysis of isolated PHAs reveal interesting properties such as biodegradability and biocompatibility. Research was focused only recently on the application of PHA in implants, scaffolds in tissue engineering, or as drug carriers. Such applications require that PHA be produced at a constant and reproducible quality. To date this can be achieved best through bacterial production in continuous culture where growth conditions are kept constant (chemostat). Recently, it was found that PHA producing bacteria are able to grow simultaneously limited by carbon and nitrogen substrates. Thus, it became possible to produce PHA at high yields on toxic substrate and also control its composition accurately (tailor-made synthesis). Finally, applications of PHA in medicine are discussed.
                Bookmark

                Author and article information

                Contributors
                bmaestro35@gmail.com
                jmsanz@umh.es
                Journal
                Microb Biotechnol
                Microb Biotechnol
                10.1111/(ISSN)1751-7915
                MBT2
                Microbial Biotechnology
                John Wiley and Sons Inc. (Hoboken )
                1751-7915
                20 April 2017
                November 2017
                : 10
                : 6 , Thematic Issue: From complex waste to plastic value ( doiID: 10.1111/mbt2.2017.10.issue-6 )
                : 1323-1337
                Affiliations
                [ 1 ] Instituto de Biología Molecular y Celular Universidad Miguel Hernández Av. Universidad s/n Elche 03202 Spain
                Author notes
                [*] [* ]For correspondence. E‐mails bmaestro35@ 123456gmail.com (B.M.); jmsanz@ 123456umh.es (J.M.S.); Tel. +34‐966‐658‐474; Fax +34‐966‐658‐758.
                Article
                MBT212718
                10.1111/1751-7915.12718
                5658603
                28425176
                ed88190f-426d-454a-a96e-010ba153b8d0
                © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 02 February 2017
                : 19 March 2017
                : 22 March 2017
                Page count
                Figures: 3, Tables: 1, Pages: 15, Words: 11086
                Funding
                Funded by: Spanish Ministry of Economy and Competitiveness
                Award ID: BIO2013‐47684‐R
                Award ID: BIO2016‐79323‐R
                Categories
                Minireview
                Minireviews
                Custom metadata
                2.0
                mbt212718
                November 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.1 mode:remove_FC converted:27.10.2017

                Biotechnology
                Biotechnology

                Comments

                Comment on this article