46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting

      , ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have employed a method based on the Cre-loxP recombination system of bacteriophage P1 to generate a mouse strain in which the JH segments and the intron enhancer in the IgH locus are deleted. By analysis of immunoglobulin isotype switch recombination in heterozygous mutant B cells activated by lipopolysaccharide plus interleukin-4, we show that, on the mutant chromosome, switch recombination at the mu gene switch region is strongly suppressed, whereas the switch region of the gamma 1 gene is efficiently rearranged. These data demonstrate an independent control of switch recombination at individual switch regions and suggest that, in the process of switch recombination, the alignment of the recombining strands occurs independently of and probably after the introduction of double-strand breaks into the switch regions involved.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene.

          Of the various classes of antibodies that B lymphocytes can produce, class M (IgM) is the first to be expressed on the membrane of the developing cells. Pre-B cells, the precursors of B-lymphocytes, produce the heavy chain of IgM (mu chain), but not light chains. Recent data suggest that pre-B cells express mu chains on the membrane together with the 'surrogate' light chains lambda 5 and V pre B (refs 2-7). This complex could control pre-B-cell differentiation, in particular the rearrangement of the light-chain genes. We have now assessed the importance of the membrane form of the mu chain in B-cell development by generating mice lacking this chain. We disrupted one of the membrane exons of the gene encoding the mu-chain constant region by gene targeting in mouse embryonic stem cells. From these cells we derived mice heterozygous or homozygous for the mutation. B-cell development in the heterozygous mice seemed to be normal, but in homozygous animals B cells were absent, their development already being arrested at the stage of pre-B-cell maturation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production.

            Gamma interferon (IFN-gamma) and B cell stimulatory factor-1 (BSF-1), also known as interleukin-4, are T cell-derived lymphokines that have potent effects on B cell proliferation and differentiation. They are often secreted by distinct T cell clones. It is now shown that IFN-gamma stimulates the expression of immunoglobulin (Ig) of the IgG2a isotype and inhibits the production of IgG3, IgG1, IgG2b, and IgE. By contrast, BSF-1 has powerful effects in promoting switching to the expression of IgG1 and IgE but markedly inhibits IgM, IgG3, IgG2a, and IgG2b. These results indicate that BSF-1 and IFN-gamma as well as the T cells that produce them may act as reciprocal regulatory agents in the determination of Ig isotype responses. The effects of IFN-gamma and BSF-1 on isotype expression are independent.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae.

              The procaryotic cre-lox site-specific recombination system of coliphage P1 was shown to function in an efficient manner in a eucaryote, the yeast Saccharomyces cerevisiae. The cre gene, which codes for a site-specific recombinase, was placed under control of the yeast GALI promoter. lox sites flanking the LEU2 gene were integrated into two different chromosomes in both orientations. Excisive recombination at the lox sites (as measured by loss of the LEU2 gene) was promoted efficiently and accurately by the Cre protein and was dependent upon induction by galactose. These results demonstrate that a procaryotic recombinase can enter a eucaryotic nucleus and, moreover, that the ability of the Cre recombinase to perform precise recombination events on the chromosomes of S. cerevisiae is unimpaired by chromatin structure.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                June 1993
                June 1993
                : 73
                : 6
                : 1155-1164
                Article
                10.1016/0092-8674(93)90644-6
                8513499
                ed8e19ef-8e03-42e8-9145-0745cba1da61
                © 1993

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article