20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Pathogenesis of Alzheimer's Disease: A Reevaluation of the “Amyloid Cascade Hypothesis”

      research-article
      *
      International Journal of Alzheimer's Disease
      SAGE-Hindawi Access to Research

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The most influential theory to explain the pathogenesis of Alzheimer's disease (AD) has been the “Amyloid Cascade Hypothesis” (ACH) first formulated in 1992. The ACH proposes that the deposition of β-amyloid (A β) is the initial pathological event in AD leading to the formation of senile plaques (SPs) and then to neurofibrillary tangles (NFTs) death of neurons, and ultimately dementia. This paper examines two questions regarding the ACH: (1) is there a relationship between the pathogenesis of SPs and NFTs, and (2) what is the relationship of these lesions to disease pathogenesis? These questions are examined in relation to studies of the morphology and molecular determinants of SPs and NFTs, the effects of gene mutation, degeneration induced by head injury, the effects of experimentally induced brain lesions, transgenic studies, and the degeneration of anatomical pathways. It was concluded that SPs and NFTs develop independently and may be the products rather than the causes of neurodegeneration in AD. A modification to the ACH is proposed which may better explain the pathogenesis of AD, especially of late-onset cases of the disease.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Candidate gene for the chromosome 1 familial Alzheimer's disease locus.

          A candidate gene for the chromosome 1 Alzheimer's disease (AD) locus was identified (STM2). The predicted amino acid sequence for STM2 is homologous to that of the recently cloned chromosome 14 AD gene (S182). A point mutation in STM2, resulting in the substitution of an isoleucine for an asparagine (N141l), was identified in affected people from Volga German AD kindreds. This N141l mutation occurs at an amino acid residue that is conserved in human S182 and in the mouse S182 homolog. The presence of missense mutations in AD subjects in two highly similar genes strongly supports the hypothesis that mutations in both are pathogenic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene.

            A mutation at codon 717 of the beta-amyloid precursor protein gene has been found to cosegregate with familial Alzheimer's disease in a single family. This mutation has been reported in a further five out of approximately 100 families multiply affected by Alzheimer's disease. We have identified another family, F19, in which we have detected linkage between the beta-amyloid precursor protein gene and Alzheimer's disease. Direct sequencing of exon 17 in affected individuals from this family has revealed a base change producing a Val----Gly substitution, also at codon 717. The occurrence of a second allelic variant at codon 717 linked to the Alzheimer's phenotype supports the hypothesis that they are pathogenic mutations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein.

              The cerebrovascular amyloid protein from a case of adult Down's syndrome was isolated and purified. Amino acid sequence analysis showed it to be homologous to that of the beta protein of Alzheimer's disease. This is the first chemical evidence of a relationship between Down's syndrome and Alzheimer's disease. It suggests that Down's syndrome may be a predictable model for Alzheimer's disease. Assuming the beta protein is a human gene product, it also suggests that the genetic defect in Alzheimer's disease is localized on chromosome 21.
                Bookmark

                Author and article information

                Journal
                Int J Alzheimers Dis
                IJAD
                International Journal of Alzheimer's Disease
                SAGE-Hindawi Access to Research
                2090-0252
                2011
                7 February 2011
                : 2011
                : 630865
                Affiliations
                Vision Sciences, Aston University, Birmingham B4 7ET, UK
                Author notes

                Academic Editor: Alan P. Hudson

                Article
                10.4061/2011/630865
                3038555
                21331369
                ed95ade7-e871-41be-9092-2861c26aace3
                Copyright © 2011 R. A. Armstrong.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 November 2010
                : 4 January 2011
                Categories
                Research Article

                Neurology
                Neurology

                Comments

                Comment on this article