31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH) 3 and Sb(OH) 3 across membranes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Arsenic is a toxic and highly abundant metalloid that endangers human health through drinking water and the food chain. The most common forms of arsenic in the environment are arsenate (As(V)) and arsenite (As(III)). As(V) is a non-functional phosphate analog that enters the food chain via plant phosphate transporters. Inside cells, As(V) becomes reduced to As(III) for subsequent extrusion or compartmentation. Although much is known about As(III) transport and handling in microbes and mammals, the transport systems for As(III) have not yet been characterized in plants.

          Results

          Here we show that the Nodulin26-like Intrinsic Proteins (NIPs) AtNIP5;1 and AtNIP6;1 from Arabidopsis thaliana, OsNIP2;1 and OsNIP3;2 from Oryza sativa, and LjNIP5;1 and LjNIP6;1 from Lotus japonicus are bi-directional As(III) channels. Expression of these NIPs sensitized yeast cells to As(III) and antimonite (Sb(III)), and direct transport assays confirmed their ability to facilitate As(III) transport across cell membranes. On medium containing As(V), expression of the same NIPs improved yeast growth, probably due to increased As(III) efflux. Our data furthermore provide evidence that NIPs can discriminate between highly similar substrates and that they may have differential preferences in the direction of transport. A subgroup of As(III) permeable channels that group together in a phylogenetic tree required N-terminal truncation for functional expression in yeast.

          Conclusion

          This is the first molecular identification of plant As(III) transport systems and we propose that metalloid transport through NIPs is a conserved and ancient feature. Our observations are potentially of great importance for improved remediation and tolerance of plants, and may provide a key to the development of low arsenic crops for food production.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          A silicon transporter in rice.

          Silicon is beneficial to plant growth and helps plants to overcome abiotic and biotic stresses by preventing lodging (falling over) and increasing resistance to pests and diseases, as well as other stresses. Silicon is essential for high and sustainable production of rice, but the molecular mechanism responsible for the uptake of silicon is unknown. Here we describe the Low silicon rice 1 (Lsi1) gene, which controls silicon accumulation in rice, a typical silicon-accumulating plant. This gene belongs to the aquaporin family and is constitutively expressed in the roots. Lsi1 is localized on the plasma membrane of the distal side of both exodermis and endodermis cells, where casparian strips are located. Suppression of Lsi1 expression resulted in reduced silicon uptake. Furthermore, expression of Lsi1 in Xenopus oocytes showed transport activity for silicon only. The identification of a silicon transporter provides both an insight into the silicon uptake system in plants, and a new strategy for producing crops with high resistance to multiple stresses by genetic modification of the root's silicon uptake capacity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An efflux transporter of silicon in rice.

            Silicon is an important nutrient for the optimal growth and sustainable production of rice. Rice accumulates up to 10% silicon in the shoot, and this high accumulation is required to protect the plant from multiple abiotic and biotic stresses. A gene, Lsi1, that encodes a silicon influx transporter has been identified in rice. Here we describe a previously uncharacterized gene, low silicon rice 2 (Lsi2), which has no similarity to Lsi1. This gene is constitutively expressed in the roots. The protein encoded by this gene is localized, like Lsi1, on the plasma membrane of cells in both the exodermis and the endodermis, but in contrast to Lsi1, which is localized on the distal side, Lsi2 is localized on the proximal side of the same cells. Expression of Lsi2 in Xenopus oocytes did not result in influx transport activity for silicon, but preloading of the oocytes with silicon resulted in a release of silicon, indicating that Lsi2 is a silicon efflux transporter. The identification of this silicon transporter revealed a unique mechanism of nutrient transport in plants: having an influx transporter on one side and an efflux transporter on the other side of the cell to permit the effective transcellular transport of the nutrients.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species

                Bookmark

                Author and article information

                Journal
                BMC Biol
                BMC Biology
                BioMed Central
                1741-7007
                2008
                10 June 2008
                : 6
                : 26
                Affiliations
                [1 ]Department of Agricultural Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark
                [2 ]Department of Cell and Molecular Biology/Microbiology, University of Gothenburg, Göteborg, Sweden
                [3 ]Department of Plant and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
                [4 ]Department of Chemistry, Atmospheric Science, University of Gothenburg, Göteborg, Sweden
                [5 ]Current Address: UCL Université catholique de Louvain, Unité de biochemie physiologique, Croix du Sud 5/15, 1348 Louvain-la-Neuve, Belgium
                Article
                1741-7007-6-26
                10.1186/1741-7007-6-26
                2442057
                18544156
                eda86619-c6fb-4567-b7b8-afa03522bd2f
                Copyright © 2008 Bienert et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 December 2007
                : 10 June 2008
                Categories
                Research Article

                Life sciences
                Life sciences

                Comments

                Comment on this article