12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Kynurenine Is a Cerebrospinal Fluid Biomarker for Bacterial and Viral Central Nervous System Infections

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases.

          The kynurenine pathway (KP) of tryptophan metabolism has emerged in recent years as a key regulator of the production of both neuroprotective (e.g. kynurenic and picolinic acid, and the essential cofactor NAD+) and neurotoxic metabolites (e.g. quinolinic acid, 3-hydroxykynurenine). The balance between the production of the two types of metabolites is controlled by key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO-1), and in turn, molecular signals such as interferon-γ (IFN-γ), which activate the KP metabolism of tryptophan by this enzyme, as opposed to alternative pathways for serotonin and melatonin production. Dysregulated KP metabolism has been strongly associated with neurological diseases in recent years, and is the subject of increasing efforts to understand how the metabolites are causative of disease pathology. Concurrent with these endeavours are drug development initiatives to use inhibitors to block certain enzymes in the pathway, resulting in reduced levels of neurotoxic metabolites (e.g. quinolinic acid, an excitotoxin and N-Methyl-d-Aspartate (NMDA) receptor agonist), while in turn enhancing the bioavailability of the neuroprotective metabolites such as kynurenic acid. Neurodegenerative diseases often have a substantial autoimmune or inflammatory component; hence a greater understanding of how KP metabolites influence the inflammatory cascade is required. Additionally, challenges exist in diseases like multiple sclerosis (MS) and motor neurone disease (MND), which do not have reliable biomarkers. Clinical diagnosis can often be prolonged in order to exclude other diseases, and often diagnosis occurs at an advanced state of disease pathology, which does not allow a lengthy time for patient assessment and intervention therapies. This review considers the current evidence for involvement of the KP in several neurological diseases, in biomarkers of disease and also the parallels that exist in KP metabolism with what is known in other diseases such as HIV, Alzheimer's disease/dementia, infection, immune privilege and cardiovascular disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease

            Parkinson's disease (PD) is a common neurodegenerative disorder characterized by loss of dopaminergic neurons and localized neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Neuroinflammation leads to microglia activation and release of a large number of proinflammatory mediators. The kynurenine pathway (KP) of tryptophan catabolism is one of the major regulators of the immune response and is also likely to be implicated in the inflammatory and neurotoxic events in Parkinsonism. Several neuroactive compounds are produced through the KP that can be either a neurotoxic, neuroprotective or immunomodulator. Among these metabolites kynurenic acid (KYNA), produced by astrocytes, is considered as neuroprotective whereas quinolinic acid (QUIN), released by activated microglia, can activate the N-methyl-d-aspartate (NMDA) receptor-signalling pathway, leading to excitotoxicity and amplify the inflammatory response. Previous studies have shown that NMDA antagonists can ease symptoms and exert a neuroprotective effect in PD both in vivo and in vitro. There are to date several lines of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that some of the KP metabolites could be used as prognostic biomarkers and that pharmacological modulators of the KP enzymes could represent a new therapeutic strategy for PD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The kynurenine pathway and inflammation in amyotrophic lateral sclerosis.

              Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease of unknown pathogenesis. The kynurenine pathway (KP), activated during neuroinflammation, is emerging as a possible contributory factor in ALS. The KP is the major route for tryptophan (TRP) catabolism. The intermediates generated can be either neurotoxic, such as quinolinic acid (QUIN), or neuroprotective, such as picolinic acid (PIC), an important endogenous chelator. The first and inducible enzyme of the pathway is indoleamine 2,3-dioxygenase (IDO). The present study aimed to characterize the expression of the KP in cerebrospinal fluid (CSF), serum and central nervous system (CNS) tissue of ALS patients. Using high performance liquid chromatography, we analysed the levels of TRP and kynurenine (KYN), and, with gas chromatography/mass spectrometry, the levels of PIC and QUIN, in the CSF and serum of ALS patients and control subjects. Immunohistochemistry was employed to determine the expression of QUIN, IDO and human leukocyte antigen-DR (HLA-DR) in sections of brain and spinal cord from ALS patients. There were significantly increased levels of CSF and serum TRP (P < 0.0001), KYN (P < 0.0001) and QUIN (P < 0.05) and decreased levels of serum PIC (P < 0.05) in ALS samples. There was a significant increase in activated microglia expressing HLA-DR (P < 0.0001) and increased neuronal and microglial expression of IDO and QUIN in ALS motor cortex and spinal cord. We show the presence of neuroinflammation in ALS and provide the first strong evidence for the involvement of the KP in ALS. These data point to an inflammation-driven excitotoxic-chelation defective mechanism in ALS, which may be amenable to inhibitors of the KP.
                Bookmark

                Author and article information

                Journal
                The Journal of Infectious Diseases
                Oxford University Press (OUP)
                0022-1899
                1537-6613
                July 01 2019
                June 05 2019
                February 05 2019
                July 01 2019
                June 05 2019
                February 05 2019
                : 220
                : 1
                : 127-138
                Affiliations
                [1 ]Division of Clinical Neuroimmunology and Neurochemistry, Department of Neurology
                [2 ]Center for Individualized Infection Medicine
                [3 ]Biomarkers for Infectious Diseases Research Group, TWINCORE Center for Experimental and Clinical Infection Research, Hannover
                [4 ]United Institute of Informatics Problems, Minsk, Belarus
                [5 ]Metabolomics Research Core Unit
                [6 ]Department of Psychiatry, Hannover Medical School
                [7 ]Helmholtz Center for Infection Research, Braunschweig, Germany
                Article
                10.1093/infdis/jiz048
                30721966
                eda948f3-32dd-4acd-9bea-0642282b10b3
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article