27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid Analysis of Saccharomyces cerevisiae Genome Rearrangements by Multiplex Ligation–Dependent Probe Amplification

      research-article
      1 , 2 , 3 , 2 , 3 , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aneuploidy and gross chromosomal rearrangements (GCRs) can lead to genetic diseases and the development of cancer. We previously demonstrated that introduction of the repetitive retrotransposon Ty912 onto a nonessential chromosome arm of Saccharomyces cerevisiae led to increased genome instability predominantly due to increased rates of formation of monocentric nonreciprocal translocations. In this study, we adapted Multiplex Ligation–dependent Probe Amplification (MLPA) to analyze a large numbers of these GCRs. Using MLPA, we found that the distribution of translocations induced by the presence of Ty912 in a wild-type strain was nonrandom and that the majority of these translocations were mediated by only six translocation targets on four different chromosomes, even though there were 254 potential Ty-related translocation targets in the S. cerevisiae genome. While the majority of Ty912-mediated translocations resulted from RAD52-dependent recombination, we observed a number of nonreciprocal translocations mediated by RAD52-independent recombination between Ty1 elements. The formation of these RAD52-independent translocations did not require the Rad51 or Rad59 homologous pairing proteins or the Rad1–Rad10 endonuclease complex that processes branched DNAs during recombination. Finally, we found that defects in ASF1-RTT109–dependent acetylation of histone H3 lysine residue 56 (H3K56) resulted in increased accumulation of both GCRs and whole-chromosome duplications, and resulted in aneuploidy that tended to occur simultaneously with GCRs. Overall, we found that MLPA is a versatile technique for the rapid analysis of GCRs and can facilitate the genetic analysis of the pathways that prevent and promote GCRs and aneuploidy.

          Author Summary

          In this study we describe an adaptation of Multiplex Ligation–dependent Probe Amplification (MLPA) for use in the study of gross chromosomal rearrangements (GCRs) that occur in S. cerevisiae mutants with increased genome instability. Our previous study found that the presence of a Ty912 element on a nonessential arm of chromosome V resulted in increased rates of non-reciprocal monocentric translocations arising from recombination between the Ty912 on chromosome V and ectopic Ty elements on other chromosomes. Using MLPA, we observed that the majority of the translocations targeted six different translocation hotspots even though there were at least 254 potential targets for Ty-mediated translocations in the S. cerevisiae genome. Most of the observed translocations were formed by RAD52-dependent recombination, although we also identified a RAD52-independent recombination pathway that promoted the formation of the same types of translocations at lower rates. Finally, we found that defects in the ASF1-RTT109–dependent histone H3 lysine 56 (H3K56) acetylation pathway caused increased rates of both Ty-mediated translocations and whole-chromosome duplications (aneuploidy). This aneuploidy often occurred simultaneously with Ty-mediated translocations. Overall, our results demonstrate that MLPA is a rapid, inexpensive method that allows the analysis of the large number of GCRs needed to understand the pathways that suppress or promote genome instability.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic instabilities in human cancers.

          Whether and how human tumours are genetically unstable has been debated for decades. There is now evidence that most cancers may indeed be genetically unstable, but that the instability exists at two distinct levels. In a small subset of tumours, the instability is observed at the nucleotide level and results in base substitutions or deletions or insertions of a few nucleotides. In most other cancers, the instability is observed at the chromosome level, resulting in losses and gains of whole chromosomes or large portions thereof. Recognition and comparison of these instabilities are leading to new insights into tumour pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosome aberrations in solid tumors.

            Chromosome aberrations in human solid tumors are hallmarks of gene deregulation and genome instability. This review summarizes current knowledge regarding aberrations, discusses their functional importance, suggests mechanisms by which aberrations may form during cancer progression and provides examples of clinical advances that have come from studies of chromosome aberrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56.

              Posttranslational modifications of the histone octamer play important roles in regulating responses to DNA damage. Here, we reveal that Saccharomyces cerevisiae Rtt109p promotes genome stability and resistance to DNA-damaging agents, and that it does this by functionally cooperating with the histone chaperone Asf1p to maintain normal chromatin structure. Furthermore, we show that, as for Asf1p, Rtt109p is required for histone H3 acetylation on lysine 56 (K56) in vivo. Moreover, we show that Rtt109p directly catalyzes this modification in vitro in a manner that is stimulated by Asf1p. These data establish Rtt109p as a member of a new class of histone acetyltransferases and show that its actions are critical for cell survival in the presence of DNA damage during S phase.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2012
                March 2012
                1 March 2012
                : 8
                : 3
                : e1002539
                Affiliations
                [1 ]Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
                [2 ]Ludwig Institute for Cancer Research, Cancer Center and Departments of Medicine and Cellular and Molecular Medicine, Moores–UCSD Cancer Center, School of Medicine, University of California San Diego, La Jolla, California, United States of America
                [3 ]Institute of Genomic Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
                The University of North Carolina at Chapel Hill, United States of America
                Author notes

                Conceived and designed the experiments: JEC RDK. Performed the experiments: JEC. Analyzed the data: JEC RDK. Contributed reagents/materials/analysis tools: JEC RDK. Wrote the paper: JEC RDK.

                Article
                PGENETICS-D-11-02117
                10.1371/journal.pgen.1002539
                3291544
                22396658
                edbd4506-2837-4c8f-b759-f2871882147a
                Chan, Kolodner. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 October 2011
                : 29 December 2011
                Page count
                Pages: 19
                Categories
                Research Article
                Biology
                Genetics
                Genomics
                Model Organisms

                Genetics
                Genetics

                Comments

                Comment on this article