87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We and others recently demonstrated that the readily programmable CRISPR/Cas9 system can be used to edit the Drosophila genome. However, most applications to date have relied on aberrant DNA repair to stochastically generate frameshifting indels and adoption has been limited by a lack of tools for efficient identification of targeted events. Here we report optimized tools and techniques for expanded application of the CRISPR/Cas9 system in Drosophila through homology-directed repair (HDR) with double-stranded DNA (dsDNA) donor templates that facilitate complex genome engineering through the precise incorporation of large DNA sequences, including screenable markers. Using these donors, we demonstrate the replacement of a gene with exogenous sequences and the generation of a conditional allele. To optimize efficiency and specificity, we generated transgenic flies that express Cas9 in the germline and directly compared HDR and off-target cleavage rates of different approaches for delivering CRISPR components. We also investigated HDR efficiency in a mutant background previously demonstrated to bias DNA repair toward HDR. Finally, we developed a web-based tool that identifies CRISPR target sites and evaluates their potential for off-target cleavage using empirically rooted rules. Overall, we have found that injection of a dsDNA donor and guide RNA-encoding plasmids into vasa-Cas9 flies yields the highest efficiency HDR and that target sites can be selected to avoid off-target mutations. Efficient and specific CRISPR/Cas9-mediated HDR opens the door to a broad array of complex genome modifications and greatly expands the utility of CRISPR technology for Drosophila research.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases.

          Germ-line transformation via transposable elements is a powerful tool to study gene function in Drosophila melanogaster. However, some inherent characteristics of transposon-mediated transgenesis limit its use for transgene analysis. Here, we circumvent these limitations by optimizing a phiC31-based integration system. We generated a collection of lines with precisely mapped attP sites that allow the insertion of transgenes into many different predetermined intergenic locations throughout the fly genome. By using regulatory elements of the nanos and vasa genes, we established endogenous sources of the phiC31 integrase, eliminating the difficulties of coinjecting integrase mRNA and raising the transformation efficiency. Moreover, to discriminate between specific and rare nonspecific integration events, a white gene-based reconstitution system was generated that enables visual selection for precise attP targeting. Finally, we demonstrate that our chromosomal attP sites can be modified in situ, extending their scope while retaining their properties as landing sites. The efficiency, ease-of-use, and versatility obtained here with the phiC31-based integration system represents an important advance in transgenesis and opens up the possibility of systematic, high-throughput screening of large cDNA sets and regulatory elements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease

            We have adapted a bacterial CRISPR RNA/Cas9 system to precisely engineer the Drosophila genome and report that Cas9-mediated genomic modifications are efficiently transmitted through the germline. This RNA-guided Cas9 system can be rapidly programmed to generate targeted alleles for probing gene function in Drosophila.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence.

              Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)/Cas (CRISPR-associated sequences) systems provide adaptive immunity against viruses when a spacer sequence of small CRISPR RNA (crRNA) matches a protospacer sequence in the viral genome. Viruses that escape CRISPR/Cas resistance carry point mutations in protospacers, though not all protospacer mutations lead to escape. Here, we show that in the case of Escherichia coli subtype CRISPR/Cas system, the requirements for crRNA matching are strict only for a seven-nucleotide seed region of a protospacer immediately following the essential protospacer-adjacent motif. Mutations in the seed region abolish CRISPR/Cas mediated immunity by reducing the binding affinity of the crRNA-guided Cascade complex to protospacer DNA. We propose that the crRNA seed sequence plays a role in the initial scanning of invader DNA for a match, before base pairing of the full-length spacer occurs, which may enhance the protospacer locating efficiency of the E. coli Cascade complex. In agreement with this proposal, single or multiple mutations within the protospacer but outside the seed region do not lead to escape. The relaxed specificity of the CRISPR/Cas system limits escape possibilities and allows a single crRNA to effectively target numerous related viruses.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                genetics
                genetics
                genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                April 2014
                29 January 2014
                29 January 2014
                : 196
                : 4
                : 961-971
                Affiliations
                [* ]Genetics Training Program, University of Wisconsin, Madison, Wisconsin 53706
                []Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
                []Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706
                Author notes
                [1]

                These authors contributed equally to this work.

                [2 ]Corresponding author: 227D Robert M. Bock Laboratories, 1525 Linden Dr., University of Wisconsin, Madison, WI 53706. E-mail: oconnorgiles@ 123456wisc.edu
                Article
                160713
                10.1534/genetics.113.160713
                3982687
                24478335
                edc79a33-3fe0-4c3c-9dd6-7da277f9023e
                Copyright © 2014 by the Genetics Society of America

                Available freely online through the author-supported open access option.

                History
                : 17 December 2013
                : 20 January 2014
                Page count
                Pages: 11
                Categories
                Investigations
                Methods, Technology, and Resources
                Custom metadata
                v1

                Genetics
                crispr rna,cas9,homologous recombination,genome engineering,drosophila
                Genetics
                crispr rna, cas9, homologous recombination, genome engineering, drosophila

                Comments

                Comment on this article