Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Source-separated urine contains most of the excreted nutrients, which can be recovered by using nitrification to stabilize the urine before concentrating the nutrient solution with distillation. The aim of this study was to test this process combination at pilot scale. The nitrification process was efficient in a moving bed biofilm reactor with maximal rates of 930 mg N L(-1) d(-1). Rates decreased to 120 mg N L(-1) d(-1) after switching to more concentrated urine. At high nitrification rates (640 mg N L(-1) d(-1)) and low total ammonia concentrations (1,790 mg NH4-N L(-1) in influent) distillation caused the main primary energy demand of 71 W cap(-1) (nitrification: 13 W cap(-1)) assuming a nitrogen production of 8.8 g N cap(-1) d(-1). Possible process failures include the accumulation of the nitrification intermediate nitrite and the selection of acid-tolerant ammonia-oxidizing bacteria. Especially during reactor start-up, the process must therefore be carefully supervised. The concentrate produced by the nitrification/distillation process is low in heavy metals, but high in nutrients, suggesting a good suitability as an integral fertilizer.

          Related collections

          Author and article information

          Affiliations
          [1 ] Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland E-mail: kai.udert@eawag.ch.
          [2 ] Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland E-mail: kai.udert@eawag.ch; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
          Journal
          Water Sci. Technol.
          Water science and technology : a journal of the International Association on Water Pollution Research
          IWA Publishing
          0273-1223
          0273-1223
          2016
          : 73
          : 1
          26744953 10.2166/wst.2015.485

          Comments

          Comment on this article