18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Archaeal rhizosphere communities differ between the native and invasive lineages of the wetland plant Phragmites australis (common reed) in a Chesapeake Bay subestuary

      , , ,
      Biological Invasions
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Universal primers for amplification of three non-coding regions of chloroplast DNA.

          Six primers for the amplification of three non-coding regions of chloroplast DNA via the polymerase chain reaction (PCR) have been designed. In order to find out whether these primers were universal, we used them in an attempt to amplify DNA from various plant species. The primers worked for most species tested including algae, bryophytes, pteridophytes, gymnosperms and angiosperms. The fact that they amplify chloroplast DNA non-coding regions over a wide taxonomic range means that these primers may be used to study the population biology (in supplying markers) and evolution (inter- and probably intraspecific phylogenies) of plants.
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean.

            Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, occurs in a wide variety of environments and plays a central role in the global nitrogen cycle. Catalyzed by the enzyme ammonia monooxygenase, the ability to oxidize ammonia was previously thought to be restricted to a few groups within the beta- and gamma-Proteobacteria. However, recent metagenomic studies have revealed the existence of unique ammonia monooxygenase alpha-subunit (amoA) genes derived from uncultivated, nonextremophilic Crenarchaeota. Here, we report molecular evidence for the widespread presence of ammonia-oxidizing archaea (AOA) in marine water columns and sediments. Using PCR primers designed to specifically target archaeal amoA, we find AOA to be pervasive in areas of the ocean that are critical for the global nitrogen cycle, including the base of the euphotic zone, suboxic water columns, and estuarine and coastal sediments. Diverse and distinct AOA communities are associated with each of these habitats, with little overlap between water columns and sediments. Within marine sediments, most AOA sequences are unique to individual sampling locations, whereas a small number of sequences are evidently cosmopolitan in distribution. Considering the abundance of nonextremophilic archaea in the ocean, our results suggest that AOA may play a significant, but previously unrecognized, role in the global nitrogen cycle.
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA.

              Using a set of synthetic oligonucleotides homologous to broadly conserved sequences in-vitro amplification via the polymerase chain reaction followed by direct sequencing results in almost complete nucleotide determination of a gene coding for 16S ribosomal RNA. As a model system the nucleotide sequence of the 16S rRNA gene of M.kansasii was determined and found to be 98.7% homologous to that of M.bovis BCG. This is the first report on a contiguous sequence information of an entire amplified gene spanning 1.5 kb without any subcloning procedures.

                Author and article information

                Journal
                Biological Invasions
                Biol Invasions
                Springer Nature
                1387-3547
                1573-1464
                September 2016
                April 2016
                : 18
                : 9
                : 2717-2728
                Article
                10.1007/s10530-016-1144-z
                edca5ba0-8b6e-48e2-9510-61346977feb3
                © 2016
                History

                Comments

                Comment on this article

                Related Documents Log