15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During development, neural progenitors are temporally patterned to sequentially generate a variety of neural types. In Drosophila neural progenitors called neuroblasts, temporal patterning is regulated by cascades of Temporal Transcription Factors (TTFs). However, known TTFs were mostly identified through candidate approaches and may not be complete. In addition, many fundamental questions remain concerning the TTF cascade initiation, progression, and termination. In this work, we use single-cell RNA sequencing of Drosophila medulla neuroblasts of all ages to identify a list of previously unknown TTFs, and experimentally characterize their roles in temporal patterning and neuronal specification. Our study reveals a comprehensive temporal gene network that patterns medulla neuroblasts from start to end. Furthermore, the speed of the cascade progression is regulated by Lola transcription factors expressed in all medulla neuroblasts. Our comprehensive study of the medulla neuroblast temporal cascade illustrates mechanisms that may be conserved in the temporal patterning of neural progenitors.

          Abstract

          During development, neural progenitors generate a variety of neural types sequentially. Here the authors examine gene expression patterns in Drosophila neural progenitors at single-cell level, and identify a gene regulatory network controlling the sequential generation of different neural types.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

          DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists

            Functional analysis of large gene lists, derived in most cases from emerging high-throughput genomic, proteomic and bioinformatics scanning approaches, is still a challenging and daunting task. The gene-annotation enrichment analysis is a promising high-throughput strategy that increases the likelihood for investigators to identify biological processes most pertinent to their study. Approximately 68 bioinformatics enrichment tools that are currently available in the community are collected in this survey. Tools are uniquely categorized into three major classes, according to their underlying enrichment algorithms. The comprehensive collections, unique tool classifications and associated questions/issues will provide a more comprehensive and up-to-date view regarding the advantages, pitfalls and recent trends in a simpler tool-class level rather than by a tool-by-tool approach. Thus, the survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice

              The ice arches that usually develop at the northern and southern ends of Nares Strait play an important role in modulating the export of Arctic Ocean multi-year sea ice. The Arctic Ocean is evolving towards an ice pack that is younger, thinner, and more mobile and the fate of its multi-year ice is becoming of increasing interest. Here, we use sea ice motion retrievals from Sentinel-1 imagery to report on the recent behavior of these ice arches and the associated ice fluxes. We show that the duration of arch formation has decreased over the past 20 years, while the ice area and volume fluxes along Nares Strait have both increased. These results suggest that a transition is underway towards a state where the formation of these arches will become atypical with a concomitant increase in the export of multi-year ice accelerating the transition towards a younger and thinner Arctic ice pack.

                Author and article information

                Contributors
                lixin@illinois.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                10 March 2022
                10 March 2022
                2022
                : 13
                : 1247
                Affiliations
                [1 ]GRID grid.35403.31, ISNI 0000 0004 1936 9991, Department of Cell and Developmental Biology, , University of Illinois at Urbana-Champaign, ; Urbana, IL 61801 USA
                [2 ]GRID grid.35403.31, ISNI 0000 0004 1936 9991, Department of Statistics, , University of Illinois at Urbana-Champaign, ; Urbana, IL 61801 USA
                [3 ]GRID grid.35403.31, ISNI 0000 0004 1936 9991, Carl R. Woese Institute for Genomic Biology, , University of Illinois at Urbana–Champaign, ; Urbana, IL 61801 USA
                Author information
                http://orcid.org/0000-0002-3428-3569
                Article
                28915
                10.1038/s41467-022-28915-3
                8913700
                35273186
                edf08086-0b83-4a91-9d00-951b3c93c157
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 March 2021
                : 12 February 2022
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000053, U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI);
                Award ID: Grant 1 R01 EY026965-01A1
                Award Recipient :
                Funded by: NSF-Simons Center for Quantitative Biology at Northwestern University
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                developmental neurogenesis,neural stem cells,neural progenitors,cell type diversity,cell fate and cell lineage

                Comments

                Comment on this article

                Related Documents Log