15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      N 6-methyladenosine modification and METTL3 modulate enterovirus 71 replication

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          N 6-methyladenosine (m 6A) constitutes one of the most abundant internal RNA modifications and is critical for RNA metabolism and function. It has been previously reported that viral RNA contains internal m 6A modifications; however, only recently the function of m 6A modification in viral RNAs has been elucidated during infections of HIV, hepatitis C virus and Zika virus. In the present study, we found that enterovirus 71 (EV71) RNA undergoes m 6A modification during viral infection, which alters the expression and localization of the methyltransferase and demethylase of m 6A, and its binding proteins. Moreover, knockdown of m 6A methyltransferase resulted in decreased EV71 replication, whereas knockdown of the demethylase had the opposite effect. Further study showed that the m 6A binding proteins also participate in the regulation of viral replication. In particular, two m 6A modification sites were identified in the viral genome, of which mutations resulted in decreased virus replication, suggesting that m 6A modification plays an important role in EV71 replication. Notably, we found that METTL3 interacted with viral RNA-dependent RNA polymerase 3D and induced enhanced sumoylation and ubiquitination of the 3D polymerase that boosted viral replication. Taken together, our findings demonstrated that the host m 6A modification complex interacts with viral proteins to modulate EV71 replication.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing.

          N(6)-methyladenosine-sequencing (m(6)A-seq) is an immunocapturing approach for the unbiased transcriptome-wide localization of m(6)A in high resolution. To our knowledge, this is the first protocol to allow a global view of this ubiquitous RNA modification, and it is based on antibody-mediated enrichment of methylated RNA fragments followed by massively parallel sequencing. Building on principles of chromatin immunoprecipitation-sequencing (ChIP-seq) and methylated DNA immunoprecipitation (MeDIP), read densities of immunoprecipitated RNA relative to untreated input control are used to identify methylated sites. A consensus motif is deduced, and its distance to the point of maximal enrichment is assessed; these measures further corroborate the success of the protocol. Identified locations are intersected in turn with gene architecture to draw conclusions regarding the distribution of m(6)A between and within gene transcripts. When applied to human and mouse transcriptomes, m(6)A-seq generated comprehensive methylation profiles revealing, for the first time, tenets governing the nonrandom distribution of m(6)A. The protocol can be completed within ~9 d for four different sample pairs (each consists of an immunoprecipitation and corresponding input).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor.

            N6-Methyladenosine is a ubiquitous modification identified in the mRNA of numerous eukaryotes, where it is present within both coding and noncoding regions. However, this base modification does not alter the coding capacity, and its biological significance remains unclear. We show that Arabidopsis thaliana mRNA contains N6-methyladenosine at levels similar to those previously reported for animal cells. We further show that inactivation of the Arabidopsis ortholog of the yeast and human mRNA adenosine methylase (MTA) results in failure of the developing embryo to progress past the globular stage. We also demonstrate that the arrested seeds are deficient in mRNAs containing N6-methyladenosine. Expression of MTA is strongly associated with dividing tissues, particularly reproductive organs, shoot meristems, and emerging lateral roots. Finally, we show that MTA interacts in vitro and in vivo with At FIP37, a homolog of the Drosophila protein FEMALE LETHAL2D and of human WILMS' TUMOUR1-ASSOCIATING PROTEIN. The results reported here provide direct evidence for an essential function for N6-methyladenosine in a multicellular eukaryote, and the interaction with At FIP37 suggests possible RNA processing events that might be regulated or altered by this base modification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An overview of the evolution of enterovirus 71 and its clinical and public health significance.

              Since its discovery in 1969, enterovirus 71 (EV71) has been recognised as a frequent cause of epidemics of hand-foot-and-mouth disease (HFMD) associated with severe neurological sequelae in a small proportion of cases. There has been a significant increase in EV71 epidemic activity throughout the Asia-Pacific region since 1997. Recent HFMD epidemics in this region have been associated with a severe form of brainstem encephalitis associated with pulmonary oedema and high case-fatality rates. The emergence of large-scale epidemic activity in the Asia-Pacific region has been associated with the circulation of three genetic lineages that appear to be undergoing rapid evolutionary change. Two of these lineages (B3 and B4) have not been described previously and appear to have arisen from an endemic focus in equatorial Asia, which has served as a source of virus for HFMD epidemics in Malaysia, Singapore and Australia. The third lineage (C2) has previously been identified [Brown, B.A. et al. (1999) J. Virol. 73, 9969-9975] and was primarily responsible for the large HFMD epidemic in Taiwan during 1998. As EV71 appears not to be susceptible to newly developed antiviral agents and a vaccine is not currently available, control of EV71 epidemics through high-level surveillance and public health intervention needs to be maintained and extended throughout the Asia-Pacific region. Future research should focus on (1) understanding the molecular genetics of EV71 virulence, (2) identification of the receptor(s) for EV71, (3) development of antiviral agents to ameliorate the severity of neurological disease and (4) vaccine development to control epidemics. Following the successful experience of the poliomyelitis control programme, it may be possible to control EV71 epidemics if an effective live-attenuated vaccine is developed.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                10 January 2019
                26 October 2018
                26 October 2018
                : 47
                : 1
                : 362-374
                Affiliations
                [1 ]Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
                [2 ]University of Chinese Academy of Sciences, Beijing 100049, China
                [3 ]Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
                Author notes
                To whom correspondence should be addressed. Tel: +86 27 87197258; Fax: +86 27 87197258; Email: guanwx@ 123456wh.iov.cn
                Correspondence may also be addressed to Fei Deng. Email: df@ 123456wh.iov.cn
                Article
                gky1007
                10.1093/nar/gky1007
                6326802
                30364964
                edfa7e20-3d59-432e-b3de-95b4ce23a6a0
                © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 11 October 2018
                : 09 October 2018
                : 11 June 2018
                Page count
                Pages: 13
                Funding
                Funded by: Ministry of Science and Technology of China 10.13039/501100002855
                Award ID: 2016YFC1200400
                Funded by: Chinese Academy of Sciences 10.13039/501100002367
                Award ID: ZDRW-ZS-2016-4
                Award ID: 2015SPCAS002
                Categories
                RNA and RNA-protein complexes

                Genetics
                Genetics

                Comments

                Comment on this article