75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload–induced maladaptive cardiac remodeling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophage-derived 18-HEPE protects mice from cardiac remodeling by preventing proinflammatory activation of cardiac fibroblasts and subsequent fibrosis.

          Abstract

          N-3 polyunsaturated fatty acids (PUFAs) have potential cardiovascular benefit, although the mechanisms underlying this effect remain poorly understood. Fat-1 transgenic mice expressing Caenorhabditis elegans n-3 fatty acid desaturase, which is capable of producing n-3 PUFAs from n-6 PUFAs, exhibited resistance to pressure overload–induced inflammation and fibrosis, as well as reduced cardiac function. Lipidomic analysis revealed selective enrichment of eicosapentaenoic acid (EPA) in fat-1 transgenic bone marrow (BM) cells and EPA-metabolite 18-hydroxyeicosapentaenoic acid (18-HEPE) in fat-1 transgenic macrophages. BM transplantation experiments revealed that fat-1 transgenic BM cells, but not fat-1 transgenic cardiac cells, contributed to the antiremodeling effect and that the 18-HEPE–rich milieu in the fat-1 transgenic heart was generated by BM-derived cells, most likely macrophages. 18-HEPE inhibited macrophage-mediated proinflammatory activation of cardiac fibroblasts in culture, and in vivo administration of 18-HEPE reproduced the fat-1 mice phenotype, including resistance to pressure overload–induced maladaptive cardiac remodeling.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Myofibroblast-mediated mechanisms of pathological remodelling of the heart.

          The syncytium of cardiomyocytes in the heart is tethered within a matrix composed principally of type I fibrillar collagen. The matrix has diverse mechanical functions that ensure the optimal contractile efficiency of this muscular pump. In the diseased heart, cardiomyocytes are lost to necrotic cell death, and phenotypically transformed fibroblast-like cells-termed 'myofibroblasts'-are activated to initiate a 'reparative' fibrosis. The structural integrity of the myocardium is preserved by this scar tissue, although at the expense of its remodelled architecture, which has increased tissue stiffness and propensity to arrhythmias. A persisting population of activated myofibroblasts turns this fibrous tissue into a living 'secretome' that generates angiotensin II and its type 1 receptor, and fibrogenic growth factors (such as transforming growth factor-β), all of which collectively act as a signal-transducer-effector signalling pathway to type I collagen synthesis and, therefore, fibrosis. Persistent myofibroblasts, and the resultant fibrous tissue they produce, cause progressive adverse myocardial remodelling, a pathological hallmark of the failing heart irrespective of its etiologic origin. Herein, we review relevant cellular, subcellular, and molecular mechanisms integral to cardiac fibrosis and consequent remodelling of atria and ventricles with a heterogeneity in cardiomyocyte size. Signalling pathways that antagonize collagen fibrillogenesis provide novel strategies for cardioprotection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Controversies in ventricular remodelling.

            Ventricular remodelling describes structural changes in the left ventricle in response to chronic alterations in loading conditions, with three major patterns: concentric remodelling, when a pressure load leads to growth in cardiomyocyte thickness; eccentric hypertrophy, when a volume load produces myocyte lengthening; and myocardial infarction, an amalgam of patterns in which stretched and dilated infarcted tissue increases left-ventricular volume with a combined volume and pressure load on non-infarcted areas. Whether left-ventricular hypertrophy is adaptive or maladaptive is controversial, as suggested by patterns of signalling pathways, transgenic models, and clinical findings in aortic stenosis. The transition from apparently compensated hypertrophy to the failing heart indicates a changing balance between metalloproteinases and their inhibitors, effects of reactive oxygen species, and death-promoting and profibrotic neurohumoral responses. These processes are evasive therapeutic targets. Here, we discuss potential novel therapies for these disorders, including: sildenafil, an unexpected option for anti-transition therapy; surgery for increased sphericity caused by chronic volume overload of mitral regurgitation; an antifibrotic peptide to inhibit the fibrogenic effects of transforming growth factor beta; mechanical intervention in advanced heart failure; and stem-cell therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids.

              Mammals cannot naturally produce omega-3 (n-3) fatty acids--beneficial nutrients found mainly in fish oil--from the more abundant omega-6 (n-6) fatty acids and so they must rely on a dietary supply. Here we show that mice engineered to carry a fat-1 gene from the roundworm Caenorhabditis elegans can add a double bond into an unsaturated fatty-acid hydrocarbon chain and convert n-6 to n-3 fatty acids. This results in an abundance of n-3 and a reduction in n-6 fatty acids in the organs and tissues of these mice, in the absence of dietary n-3. As well as presenting an opportunity to investigate the roles played by n-3 fatty acids in the body, our discovery indicates that this technology might be adapted to enrich n-3 fatty acids in animal products such as meat, milk and eggs.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                28 July 2014
                : 211
                : 8
                : 1673-1687
                Affiliations
                [1 ]Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
                [2 ]Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
                [3 ]Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
                [4 ]Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
                [5 ]PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
                Author notes
                CORRESPONDENCE Makoto Arita: makoto.arita@ 123456riken.jp
                Article
                20132011
                10.1084/jem.20132011
                4113943
                25049337
                edfb4b6f-ad07-4f4b-8ff8-11001645ba8a
                © 2014 Endo et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 20 September 2013
                : 24 June 2014
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article