37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduced Wind Speed Improves Plant Growth in a Desert City

      research-article
      1 , * , 2 , 3
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The often dramatic effects of urbanization on community and ecosystem properties, such as primary productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been studied in the context of urbanization.

          Methodology/Principal Findings

          We designed a field experiment to test if increased plant growth often observed in cities is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush) plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where wind speed is already reduced.

          Conclusion/Significance

          Our results indicate that reductions in wind speed due to built structures in cities contribute to increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space and sustainable cities.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          A distinct urban biogeochemistry?

          Most of the global human population lives in urban areas where biogeochemical cycles are controlled by complex interactions between society and the environment. Urban ecology is an emerging discipline that seeks to understand these interactions, and one of the grand challenges for urban ecologists is to develop models that encompass the myriad influences of people on biogeochemistry. We suggest here that existing models, developed primarily in unmanaged and agricultural ecosystems, work poorly in urban ecosystems because they do not include human biogeochemical controls such as impervious surface proliferation, engineered aqueous flow paths, landscaping choices, and human demographic trends. Incorporating these human controls into biogeochemical models will advance urban ecology and will require enhanced collaborations with engineers and social scientists.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Urbanization effects on tree growth in the vicinity of New York City.

            Plants in urban ecosystems are exposed to many pollutants and higher temperatures, CO2 and nitrogen deposition than plants in rural areas. Although each factor has a detrimental or beneficial influence on plant growth, the net effect of all factors and the key driving variables are unknown. We grew the same cottonwood clone in urban and rural sites and found that urban plant biomass was double that of rural sites. Using soil transplants, nutrient budgets, chamber experiments and multiple regression analyses, we show that soils, temperature, CO2, nutrient deposition, urban air pollutants and microclimatic variables could not account for increased growth in the city. Rather, higher rural ozone (O3) exposures reduced growth at rural sites. Urban precursors fuel the reactions of O3 formation, but NO(x) scavenging reactions resulted in lower cumulative urban O3 exposures compared to agricultural and forested sites throughout the northeastern USA. Our study shows the overriding effect of O3 despite a diversity of altered environmental factors, reveals 'footprints' of lower cumulative urban O3 exposures amidst a background of higher regional exposures, and shows a greater adverse effect of urban pollutant emissions beyond the urban core.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Built environment, adiposity, and physical activity in adults aged 50-75.

              Few studies have investigated the built environment and its association with health-especially excess adiposity-and physical activity in the immediate pre-Baby Boom/early-Baby Boom generations, soon to be the dominant demographic in the U.S. The purpose of this study was to examine this relationship. This study used a cross-sectional, multilevel design with neighborhoods as the primary sampling unit (PSU). Residents (N=1221; aged 50-75) were recruited from 120 neighborhoods in Portland OR. The independent variables at the PSU level involved GIS-derived measures of land-use mix, distribution of fast-food outlets, street connectivity, access to public transportation, and green and open spaces. Dependent variables included resident-level measures of excess adiposity (BMI>or=25), three walking activities, and physical activity. Data were collected in 2006-2007 and analyzed in 2007. Each unit (i.e., 10%) increase in land-use mix was associated with a 25% reduction in the prevalence of overweight/obesity. However, a 1-SD increase in the density of fast-food outlets was associated with a 7% increase in overweight/obesity. Higher mixed-use land was positively associated with all three types of walking activities and the meeting of physical activity recommendations. Neighborhoods with high street connectivity, high density of public transit stations, and green and open spaces were related in varying degrees to walking and the meeting of physical activity recommendations. The analyses adjusted for neighborhood- and resident-level sociodemographic characteristics. Findings suggest the need for public health and city planning officials to address modifiable neighborhood-level, built-environment characteristics to create more livable residential communities aimed at both addressing factors that may influence unhealthy eating and promoting active, healthy lifestyles in this rapidly growing population.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                10 June 2010
                : 5
                : 6
                : e11061
                Affiliations
                [1 ]School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
                [2 ]Faculty of Ecology Evolution and Environmental Sciences, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
                [3 ]The University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
                Dalhousie University, Canada
                Author notes

                Conceived and designed the experiments: CB JS SF. Performed the experiments: CB. Analyzed the data: CB. Wrote the paper: CB. Advised statistical analysis: JS. Interpretation of data: JS SF. Revised the article critically for important intellectual content: JS SF. Drafted the article: SF.

                Article
                10-PONE-RA-17480R1
                10.1371/journal.pone.0011061
                2883576
                20548790
                ee0255ec-1b71-41db-b28d-2929a58d078d
                Bang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 March 2010
                : 21 May 2010
                Page count
                Pages: 8
                Categories
                Research Article
                Ecology
                Ecology/Community Ecology and Biodiversity
                Ecology/Ecosystem Ecology
                Ecology/Plant-Environment Interactions

                Uncategorized
                Uncategorized

                Comments

                Comment on this article