4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Retracted: Tensiomyography and Statistical Analysis Based Muscle Change Detection in Multiple Sclerosis for Smart Healthcare

      retraction
      Journal of Healthcare Engineering
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Tensiomyography and Statistical Analysis Based Muscle Change Detection in Multiple Sclerosis for Smart Healthcare

          The impact of demyelinization on muscle fiber changes and the type of changes in multiple sclerosis (MS) is very hard to estimate. One of the major problems of MS patients is muscle fatigue and decrease of muscle force in the range of 16–57%. The objective of this research work is to estimate various aspects of muscle changes at tibial muscle (mTA) level using a noninvasive method named as tensiomyography (TMG). TMG provides information about muscle functions in MS. This study includes 40 MS patients among which 18 are males (45%) and 22 are females (55%). They are divided in two subgroups: subgroup A and subgroup B. Subgroup A includes 20 MS patients without clinical decelable gait disorders and subgroup B includes 20 MS patients with clinical decelable gait disorders. Also, we have a control group that includes 20 healthy people with the same average age. Average age is 38.15 ± 11.19 y for MS patients and 39.34 ± 10.57 for healthy people. Evaluation measures include ADL score and EDSS scale. The ADL score is 0 for patients from subgroup A and 1 for patients from subgroup B. The EDSS score is 1 for subgroup A and 2.5 for subgroup B. This study confirms the importance of TMG based evaluation of muscle changes in MS patients. This smart healthcare system is also used for prediction of the muscle changes and muscle imbalance. Contraction time (Tc) recordings are used to detect the muscle fatigue which is a specific symptom of MS. The value of Tc for subgroup A is 45.8 ms and subgroup B is 61.37 ms for right side. Analysis of these two parameters such as Dm and Tc could define the muscle behaviour and help provide early information about the possibility of developing gait disorders. This smart TMG system analyses the muscle tone in the best possible way to predict the onset of any diseases which is an integral part of the smart healthcare system.
            Bookmark

            Author and article information

            Contributors
            Journal
            J Healthc Eng
            J Healthc Eng
            JHE
            Journal of Healthcare Engineering
            Hindawi
            2040-2295
            2040-2309
            2023
            27 September 2023
            27 September 2023
            : 2023
            : 9862306
            Affiliations
            Article
            10.1155/2023/9862306
            10550480
            ee16854b-6c34-4960-865d-27a2db253b98
            Copyright © 2023 Journal of Healthcare Engineering.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            History
            : 26 September 2023
            : 26 September 2023
            Categories
            Retraction

            Comments

            Comment on this article