1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Umbilical Cord-Derived Mesenchymal Stem Cells Promote Corneal Epithelial Repair In Vitro

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corneal injuries are among the leading causes of blindness and vision impairment. Trauma, infectious keratitis, thermal and chemical (acids and alkali burn) injuries may lead to irreversible corneal scarring, neovascularization, conjunctivalization, and limbal stem cell deficiency. Bilateral blindness constitutes 12% of total global blindness and corneal transplantation remains a stand-alone treatment modality for the majority of end-stage corneal diseases. However, global shortage of donor corneas, the potential risk of graft rejection, and severe side effects arising from long-term use of immunosuppressive medications, demands alternative therapeutic approaches. Umbilical cord-derived mesenchymal stem cells can be isolated in large numbers using a relatively less invasive procedure. However, their role in injury induced corneal repair is largely unexplored. Here, we isolated, cultured and characterized mesenchymal stem cells from human umbilical cord, and studied the expression of mesenchymal (CD73, CD90, CD105, and CD34), ocular surface and epithelial (PAX6, WNT7A, and CK-8/18) lineage markers through immunofluorescence. The cultured human limbal and corneal epithelial cells were used as controls. Scratch assay was used to study the corneal epithelial repair potential of umbilical cord-derived mesenchymal stem cells, in vitro. The in vitro cultured umbilical cord-derived mesenchymal stem cells were plastic adherent, showed trilineage differentiation and expressed: mesenchymal markers CD90, CD105, CD73; epithelial marker CK-8/18, and ocular lineage developmental markers PAX6 and WNT-7A. Our findings suggest that umbilical cord-derived mesenchymal stem cells promote repair of the injured corneal epithelium by stimulating the proliferation of corneal epithelial cells, in vitro. They may serve as a potential non-ocular source of stem cells for treating injury induced bilateral corneal diseases.

          Related collections

          Most cited references 60

          • Record: found
          • Abstract: found
          • Article: not found

          Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.

          The considerable therapeutic potential of human multipotent mesenchymal stromal cells (MSC) has generated markedly increasing interest in a wide variety of biomedical disciplines. However, investigators report studies of MSC using different methods of isolation and expansion, and different approaches to characterizing the cells. Thus it is increasingly difficult to compare and contrast study outcomes, which hinders progress in the field. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC. First, MSC must be plastic-adherent when maintained in standard culture conditions. Second, MSC must express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules. Third, MSC must differentiate to osteoblasts, adipocytes and chondroblasts in vitro. While these criteria will probably require modification as new knowledge unfolds, we believe this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells

            In this paper we present keratin expression data that lend strong support to a model of corneal epithelial maturation in which the stem cells are located in the limbus, the transitional zone between cornea and conjunctiva. Using a new monoclonal antibody, AE5, which is highly specific for a 64,000-mol-wt corneal keratin, designated RK3, we demonstrate that this keratin is localized in all cell layers of rabbit corneal epithelium, but only in the suprabasal layers of the limbal epithelium. Analysis of cultured corneal keratinocytes showed that they express sequentially three major keratin pairs. Early cultures consisting of a monolayer of "basal" cells express mainly the 50/58K keratins, exponentially growing cells synthesize additional 48/56K keratins, and postconfluent, heavily stratified cultures begin to express the 55/64K corneal keratins. Cell separation experiments showed that basal cells isolated from postconfluent cultures contain predominantly the 50/58K pair, whereas suprabasal cells contain additional 55/64K and 48/56K pairs. Basal cells of the older, postconfluent cultures, however, can become AE5 positive, indicating that suprabasal location is not a prerequisite for the expression of the 64K keratin. Taken together, these results suggest that the acidic 55K and basic 64K keratins represent markers for an advanced stage of corneal epithelial differentiation. The fact that epithelial basal cells of central cornea but not those of the limbus possess the 64K keratin therefore indicates that corneal basal cells are in a more differentiated state than limbal basal cells. These findings, coupled with the known centripetal migration of corneal epithelial cells, strongly suggest that corneal epithelial stem cells are located in the limbus, and that corneal basal cells correspond to "transient amplifying cells" in the scheme of "stem cells----transient amplifying cells----terminally differentiated cells."
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Umbilical cord blood transplantation: the first 25 years and beyond.

              Umbilical cord blood is an alternative hematopoietic stem cell source for patients with hematologic diseases who can be cured by allogeneic hematopoietic cell transplantation. Initially, umbilical cord blood transplantation was limited to children, given the low cell dose infused. Both related and unrelated cord blood transplants have been performed with high rates of success for a variety of hematologic disorders and metabolic storage diseases in the pediatric setting. The results for adult umbilical cord blood transplantation have improved, with greater emphasis on cord blood units of sufficient cell dose and human leukocyte antigen match and with the use of double umbilical cord blood units and improved supportive care techniques. Cord blood expansion trials have recently shown improvement in time to engraftment. Umbilical cord blood is being compared with other graft sources in both retrospective and prospective trials. The growth of the field over the last 25 years and the plans for future exploration are discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                19 May 2021
                May 2021
                : 10
                : 5
                Affiliations
                [1 ]Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad 500034, India; santosh.biotech24@ 123456gmail.com (S.K.); tejalbhure7797@ 123456gmail.com (T.S.B.); gauravn07@ 123456gmail.com (G.N.); sayanbasu@ 123456lvpei.org (S.B.); drsangwan.lvpei@ 123456gmail.com (V.S.S.)
                [2 ]Department of Biotechnology, National Institute of Technology, Warangal 506004, India
                [3 ]Indian Institute of Technology-Hyderabad, Hyderabad 502285, India; bm13p1004@ 123456iith.ac.in (S.D.E.); subharath@ 123456bme.iith.ac.in (S.N.R.)
                [4 ]The Cornea Institute, L.V. Prasad Eye Institute, Hyderabad 500034, India
                Author notes
                [* ]Correspondence: parcha@ 123456nitw.ac.in (S.R.P.); sachin@ 123456lvpei.org (S.S.); Tel.: +91-97-0359-9944 (S.R.P.); +91-40-6810-2289 (S.S.)
                [†]

                Present address: Victorious Kidss Educares, Pune 411014, India.

                [‡]

                Present address: Department of Cornea & Uveitis, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, India.

                Article
                cells-10-01254
                10.3390/cells10051254
                8160941
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article