10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer, as well as acetic acid (1%) and purified water. Characterization of the present fresh and conditioned film formers and free films was done using X-ray diffraction analysis, determination of moisture sorption isotherms, and near infrared spectroscopy. The results indicated that clear changes in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly crystalline structure. This was as a result of sugar recrystallisation due to the high hydrogen bonding. The respective films plasticized with glycerol and stored at 25 degrees C/60% relative humidity (RH) or at 40 degrees C/75% RH remained flexible and amorphous for at least 3 months. The water sorption of the free films greatly increased as a function of storage time at 75 and 95% RH. The second derivative spectra of starting material and free films were capable of distinguishing the internal water from the free water after storage at different relative humidities. Free water resulted in a separate band at a lower wavelength (1903 nm) in comparison to the structured absorbed water band at 1920 nm, in the case of films the free water resulted in a band around 1900 nm.

          Related collections

          Author and article information

          Journal
          Eur J Pharm Biopharm
          European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
          0939-6411
          0939-6411
          Jul 2004
          : 58
          : 1
          Affiliations
          [1 ] Institute of Pharmacy and Food, University of Havana, Havana, Cuba.
          Article
          S0939641104000827
          10.1016/j.ejpb.2004.03.015
          15207539
          ee3199bf-d080-4261-aae6-fe527cedecde
          Copyright 2004 Elsevier B.V.
          History

          Comments

          Comment on this article