20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Combined solid-state NMR, FT-IR and computational studies on layered and porous materials

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review covers comprehensively the 2D layered and 3D porous materials that have been reported in the past 5 years where combined solid-state NMR, FT-IR and computational methods have been employed for their characterization.

          Abstract

          Understanding the structure–property relationship of solids is of utmost relevance for efficient chemical processes and technological applications in industries. This contribution reviews the concept of coupling three well-known characterization techniques (solid-state NMR, FT-IR and computational methods) for the study of solid state materials which possess 2D and 3D architectures and discusses the way it will benefit the scientific communities. It highlights the most fundamental and applied aspects of the proactive combined approach strategies to gather information at a molecular level. The integrated approach involving multiple spectroscopic and computational methods allows achieving an in-depth understanding of the surface, interfacial and confined space processes that are beneficial for the establishment of structure–property relationships. The role of ssNMR/FT-IR spectroscopic properties of probe molecules in monitoring the strength and distribution of catalytic active sites and their accessibility at the porous/layered surface is discussed. Both experimental and theoretical aspects will be considered by reporting relevant examples. This review also identifies and discusses the progress, challenges and future prospects in the field of synthesis and applications of layered and porous solids.

          Related collections

          Most cited references402

          • Record: found
          • Abstract: found
          • Article: not found

          Ultrahigh porosity in metal-organic frameworks.

          Crystalline solids with extended non-interpenetrating three-dimensional crystal structures were synthesized that support well-defined pores with internal diameters of up to 48 angstroms. The Zn4O(CO2)6 unit was joined with either one or two kinds of organic link, 4,4',4''-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate (BTE), 4,4',44''-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate (BBC), 4,4',44''-benzene-1,3,5-triyl-tribenzoate (BTB)/2,6-naphthalenedicarboxylate (NDC), and BTE/biphenyl-4,4'-dicarboxylate (BPDC), to give four metal-organic frameworks (MOFs), MOF-180, -200, -205, and -210, respectively. Members of this series of MOFs show exceptional porosities and gas (hydrogen, methane, and carbon dioxide) uptake capacities. For example, MOF-210 has Brunauer-Emmett-Teller and Langmuir surface areas of 6240 and 10,400 square meters per gram, respectively, and a total carbon dioxide storage capacity of 2870 milligrams per gram. The volume-specific internal surface area of MOF-210 (2060 square meters per cubic centimeter) is equivalent to the outer surface of nanoparticles (3-nanometer cubes) and near the ultimate adsorption limit for solid materials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luminescent metal-organic frameworks for chemical sensing and explosive detection.

            Metal-organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications. Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas. A very interesting and well-investigated topic is their optical emission properties and related applications. Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011. This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection. The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores

              D. Zhao (1998)
                Bookmark

                Author and article information

                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                2018
                2018
                : 47
                : 15
                : 5684-5739
                Affiliations
                [1 ]Department of Science and Technological Innovation, Università del Piemonte Orientale
                [2 ]15121 Alessandria
                [3 ]Italy
                [4 ]Centro Interdisciplinare Nano-SiSTeMI, Università del Piemonte Orientale
                [5 ]Department of Agricultural and Food Sciences
                [6 ]University of Bologna
                Article
                10.1039/C7CS00358G
                30014075
                ee5caa73-b3d0-4b38-b06b-77df3f79aa97
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article