15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tick-transmitted thogotovirus gains high virulence by a single MxA escape mutation in the viral nucleoprotein

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infections with emerging and re-emerging arboviruses are of increasing concern for global health. Tick-transmitted RNA viruses of the genus Thogotovirus in the Orthomyxoviridae family have considerable zoonotic potential, as indicated by the recent emergence of Bourbon virus in the USA. To successfully infect humans, arboviruses have to escape the restrictive power of the interferon defense system. This is exemplified by the high sensitivity of thogotoviruses to the antiviral action of the interferon-induced myxovirus resistance protein A (MxA) that inhibits the polymerase activity of incoming viral ribonucleoprotein complexes. Acquiring resistance to human MxA would be expected to enhance the zoonotic potential of these pathogens. Therefore, we screened a panel of 10 different thogotovirus isolates obtained from various parts of the world for their sensitivity to MxA. A single isolate from Nigeria, Jos virus, showed resistance to the antiviral action of MxA in cell culture and in MxA-transgenic mice, whereas the prototypic Sicilian isolate SiAr126 was fully MxA-sensitive. Further analysis identified two amino acid substitutions (G327R and R328V) in the viral nucleoprotein as determinants for MxA resistance. Importantly, when introduced into SiAr126, the R328V mutation resulted in complete MxA escape of the recombinant virus, without causing any viral fitness loss. The escape mutation abolished viral nucleoprotein recognition by MxA and allowed unhindered viral growth in MxA-expressing cells and in MxA-transgenic mice. These findings demonstrate that thogotoviruses can overcome the species barrier by escaping MxA restriction and reveal that these tick-transmitted viruses may have a greater zoonotic potential than previously suspected.

          Author summary

          Thogotovirus infections are known to cause isolated human fatalities, yet the zoonotic potential of these tick-transmitted pathogens is still largely unexplored. In the present study, we examined if these viruses are able to escape the interferon-induced human MxA, thereby overcoming the human innate antiviral defense. Mx proteins constitute a class of interferon-induced antiviral effector molecules that efficiently block the intracellular replication of many viruses. Here, we studied the MxA sensitivity of various thogotovirus isolates and identified two amino acid residues in the viral nucleoprotein that caused resistance to MxA. One of these exchanges was sufficient to enable an otherwise MxA-sensitive thogotovirus to fully escape MxA restriction without causing any fitness loss. Our study explores the interplay of thogotoviruses with the innate antiviral host defense and sheds light on their zoonotic potential.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SWISS-MODEL: homology modelling of protein structures and complexes

          Abstract Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimates of global seasonal influenza-associated respiratory mortality: a modelling study

            Estimates of influenza-associated mortality are important for national and international decision making on public health priorities. Previous estimates of 250 000-500 000 annual influenza deaths are outdated. We updated the estimated number of global annual influenza-associated respiratory deaths using country-specific influenza-associated excess respiratory mortality estimates from 1999-2015.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interferon-stimulated genes: a complex web of host defenses.

              Interferon-stimulated gene (ISG) products take on a number of diverse roles. Collectively, they are highly effective at resisting and controlling pathogens. In this review, we begin by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production. Next, we describe ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the JAK-STAT pathway. Several ISGs that directly inhibit virus infection are described with an emphasis on those that impact early and late stages of the virus life cycle. Finally, we describe ongoing efforts to identify and characterize antiviral ISGs, and we provide a forward-looking perspective on the ISG landscape.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Investigation
                Role: InvestigationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: Project administrationRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                16 November 2020
                November 2020
                : 16
                : 11
                : e1009038
                Affiliations
                [1 ] Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
                [2 ] Faculty of Medicine, University of Freiburg, Freiburg, Germany
                Washington University in Saint Louis, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0003-0187-559X
                Article
                PPATHOGENS-D-20-01441
                10.1371/journal.ppat.1009038
                7704052
                33196685
                ee76ffb1-7bb1-42c1-af09-ad5c5dba4cf4
                © 2020 Fuchs et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 July 2020
                : 5 October 2020
                Page count
                Figures: 8, Tables: 0, Pages: 25
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: SPP 1596/KO 1579/9-2
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: KO 1579/12-1
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100010771, Bundesanstalt für Landwirtschaft und Ernährung;
                Award ID: 2816HS008
                Award Recipient :
                The work was funded by the Deutsche Forschungsgemeinschaft (SPP 1596/KO 1579/9-2 and KO 1579/12-1) to GK and by the Bundesanstalt für Landwirtschaft und Ernährung (grant number 2816HS008) to GK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Biochemistry
                Proteins
                DNA-binding proteins
                Polymerases
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Oxidoreductases
                Luciferase
                Biology and Life Sciences
                Biochemistry
                Proteins
                Enzymes
                Oxidoreductases
                Luciferase
                Research and analysis methods
                Biological cultures
                Cell lines
                293T cells
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Transfection
                Research and Analysis Methods
                Molecular Biology Techniques
                Transfection
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Orthomyxoviruses
                Thogotovirus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Orthomyxoviruses
                Thogotovirus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Orthomyxoviruses
                Thogotovirus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Orthomyxoviruses
                Thogotovirus
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Zoonoses
                Custom metadata
                vor-update-to-uncorrected-proof
                2020-11-30
                All relevant data are within the manuscript and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article