45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The linear chromosome of the plant-pathogenic mycoplasma ' Candidatus Phytoplasma mali'

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Phytoplasmas are insect-transmitted, uncultivable bacterial plant pathogens that cause diseases in hundreds of economically important plants. They represent a monophyletic group within the class Mollicutes (trivial name mycoplasmas) and are characterized by a small genome with a low GC content, and the lack of a firm cell wall. All mycoplasmas, including strains of ' Candidatus (Ca.) Phytoplasma asteris' and ' Ca. P. australiense', examined so far have circular chromosomes, as is the case for almost all walled bacteria.

          Results

          Our work has shown that ' Ca. Phytoplasma mali', the causative agent of apple proliferation disease, has a linear chromosome. Linear chromosomes were also identified in the closely related provisional species ' Ca. P. pyri' and ' Ca. P. prunorum'. The chromosome of ' Ca. P. mali' strain AT is 601,943 bp in size and has a GC content of 21.4%. The chromosome is further characterized by large terminal inverted repeats and covalently closed hairpin ends. Analysis of the protein-coding genes revealed that glycolysis, the major energy-yielding pathway supposed for ' Ca. P. asteris', is incomplete in ' Ca. P. mali'. Due to the apparent lack of other metabolic pathways present in mycoplasmas, it is proposed that maltose and malate are utilized as carbon and energy sources. However, complete ATP-yielding pathways were not identified. ' Ca. P. mali' also differs from ' Ca. P. asteris' by a smaller genome, a lower GC content, a lower number of paralogous genes, fewer insertions of potential mobile DNA elements, and a strongly reduced number of ABC transporters for amino acids. In contrast, ' Ca. P. mali' has an extended set of genes for homologous recombination, excision repair and SOS response than ' Ca. P. asteris'.

          Conclusion

          The small linear chromosome with large terminal inverted repeats and covalently closed hairpin ends, the extremely low GC content and the limited metabolic capabilities reflect unique features of ' Ca. P. mali', not only within phytoplasmas, but all mycoplasmas. It is expected that the genome information obtained here will contribute to a better understanding of the reduced metabolism of phytoplasmas, their fastidious nutrition requirements that prevented axenic cultivation, and the mechanisms involved in pathogenicity.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).

          Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent 'tissue-specific' isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central 'core' of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi.

            The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular biology and pathogenicity of mycoplasmas.

              The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors' chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2008
                26 June 2008
                : 9
                : 306
                Affiliations
                [1 ]Max Planck Institute for Molecular Genetics, Ihnestr. 63, D-14195 Berlin, Germany
                [2 ]Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Str. 101, D-69221 Dossenheim, Germany
                [3 ]Biozentrum at the University of Wuerzburg, Institute of Bioinformatics, Am Hubland D-97074 Würzburg, Germany
                Article
                1471-2164-9-306
                10.1186/1471-2164-9-306
                2459194
                18582369
                ee7a18a3-1ffa-4fbb-bf5a-37a0bb945fbf
                Copyright © 2008 Kube et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 March 2008
                : 26 June 2008
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article