3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Configuration Models of Random Hypergraphs and their Applications

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Networks of dyadic relationships between entities have emerged as a dominant paradigm for modeling complex systems. Many empirical "networks" -- such as collaboration networks; co-occurence networks; and communication networks -- are intrinsically polyadic, with multiple entities interacting simultaneously. Historically, such polyadic data has been represented dyadically via a standard projection operation. While convenient, this projection often has unintended and uncontrolled impact on downstream analysis, especially null hypothesis-testing. In this work, we develop a class of random null models for polyadic data in the framework of hypergraphs, therefore circumventing the need for projection. The null models we define are uniform on the space of hypergraphs sharing common degree and edge dimension sequences, and thus provide direct generalizations of the classical configuration model of network science. We also derive Metropolis-Hastings algorithms in order to sample from these spaces. We then apply the model to study two classical network topics -- clustering and assortativity -- as well as one contemporary, polyadic topic -- simplicial closure. In each application, we emphasize the importance of randomizing over hypergraph space rather than projected graph space, showing that this choice can dramatically alter directional study conclusions and statistical findings. For example, we find that many of social networks we study are less clustered than would be expected at random, a finding in tension with much conventional wisdom within network science. Our findings underscore the importance of carefully choosing appropriate null spaces for polyadic relational data, and demonstrate the utility of random hypergraphs in many study contexts.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          High-Resolution Measurements of Face-to-Face Contact Patterns in a Primary School

          Background Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6–12 years children), where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices. Methods and Findings Data on face-to-face interactions were collected on Thursday, October 1st and Friday, October 2nd 2009. We recorded 77,602 contact events between 242 individuals (232 children and 10 teachers). In this setting, each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis. Conclusions We report on important properties of the contact patterns between school children that are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.
            • Record: found
            • Abstract: not found
            • Article: not found

            Race, School Integration, and Friendship Segregation in America

              • Record: found
              • Abstract: not found
              • Article: not found

              A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs

                Author and article information

                Journal
                25 February 2019
                Article
                1902.09302
                ee7dff9f-b092-490f-90b2-a3c1f7797cac

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                math.PR cs.SI physics.data-an physics.soc-ph stat.AP

                Social & Information networks,General physics,Applications,Mathematical & Computational physics,Probability

                Comments

                Comment on this article

                Related Documents Log