45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thermodynamics of the classical spin-ice model with nearest neighbour interactions using the Wang-Landau algorithm

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this article we study the classical nearest-neighbour spin-ice model (nnSI) by means of Monte Carlo simulations, using the Wang-Landau algorithm. The nnSI describes several of the salient features of the spin-ice materials. Despite its simplicity it exhibits a remarkably rich behaviour. The model has been studied using a variety of techniques, thus it serves as an ideal benchmark to test the capabilities of the Wang Landau algorithm in magnetically frustrated systems. We study in detail the residual entropy of the nnSI and, by introducing an applied magnetic field in two different crystallographic directions ([111] and [100],) we explore the physics of the kagome-ice phase, the transition to full polarisation, and the three dimensional Kasteleyn transition. In the latter case, we discuss how additional constraints can be added to the Hamiltonian, by taking into account a selective choice of states in the partition function and, then, show how this choice leads to the realization of the ideal Kasteleyn transition in the system.

          Related collections

          Author and article information

          Journal
          2015-07-13
          Article
          10.1140/epjb/e2016-60781-7
          1507.03561
          2705e60c-0c3d-440e-8072-e6f641d412c9

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          9 pages, 9 figures
          cond-mat.str-el

          Condensed matter
          Condensed matter

          Comments

          Comment on this article