9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dust Events and Indoor Air Quality in Residential Homes in Kuwait

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kuwait is a developed Middle Eastern country that is impacted by frequent dust storms from regional and/or remote deserts. The effectiveness of keeping homes tightly closed during these events to reduce dust exposures was assessed using indoor and outdoor particle samples at 10 residences within the metropolitan Kuwait City area. Specifically, this study compared indoor and outdoor levels of black carbon and 19 trace elements (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, and Zr) during dust and non-dust events and found that particle penetration efficiencies were lower during dust storm events (less than 20–30%) than during non-dust storm events (40–60%). Coarse particles had lower penetration efficiency compared to fine particles, which is due to differences in infiltration rates and settling velocities between these two size fractions. Our findings suggest that increasing home insulation could be an effective strategy to reduce indoor exposure to crustal particles from dust storm events in residential houses of Kuwait City.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          ggmap: Spatial Visualization with ggplot2

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms.

            Air pollution has been considered a hazard to human health. In the past decades, many studies highlighted the role of ambient airborne particulate matter (PM) as an important environmental pollutant for many different cardiopulmonary diseases and lung cancer. Numerous epidemiological studies in the past 30 years found a strong exposure-response relationship between PM for short-term effects (premature mortality, hospital admissions) and long-term or cumulative health effects (morbidity, lung cancer, cardiovascular and cardiopulmonary diseases, etc). Current research on airborne particle-induced health effects investigates the critical characteristics of particulate matter that determine their biological effects. Several independent groups of investigators have shown that the size of the airborne particles and their surface area determine the potential to elicit inflammatory injury, oxidative damage, and other biological effects. These effects are stronger for fine and ultrafine particles because they can penetrate deeper into the airways of the respiratory tract and can reach the alveoli in which 50% are retained in the lung parenchyma. Composition of the PM varies greatly and depends on many factors. The major components of PM are transition metals, ions (sulfate, nitrate), organic compound, quinoid stable radicals of carbonaceous material, minerals, reactive gases, and materials of biologic origin. Results from toxicological research have shown that PM have several mechanisms of adverse cellular effects, such as cytotoxicity through oxidative stress mechanisms, oxygen-free radical-generating activity, DNA oxidative damage, mutagenicity, and stimulation of proinflammatory factors. In this review, the results of the most recent epidemiological and toxicological studies are summarized. In general, the evaluation of most of these studies shows that the smaller the size of PM the higher the toxicity through mechanisms of oxidative stress and inflammation. Some studies showed that the extractable organic compounds (a variety of chemicals with mutagenic and cytotoxic properties) contribute to various mechanisms of cytotoxicity; in addition, the water-soluble faction (mainly transition metals with redox potential) play an important role in the initiation of oxidative DNA damage and membrane lipid peroxidation. Associations between chemical compositions and particle toxicity tend to be stronger for the fine and ultrafine PM size fractions. Vehicular exhaust particles are found to be most responsible for small-sized airborne PM air pollution in urban areas. With these aspects in mind, future research should aim at establishing a cleared picture of the cytotoxic and carcinogenic mechanisms of PM in the lungs, as well as mechanisms of formation during internal engine combustion processes and other sources of airborne fine particles of air pollution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The health effects of non-industrial indoor air pollution.

              There is growing public awareness regarding the risk associated with poor indoor air quality in the home and workplace. Because Americans spend approximately 22 hours every day indoors, susceptible individuals are at much greater risk of adverse health effects from chronic low levels of exposure to indoor air pollutants over time. Along with particulate matter, gases such as ozone, nitrogen dioxide, carbon monoxide, and sulfur dioxide; microbial and chemical volatile organic compounds; passive smoke; and outdoor ambient air are the most common types of air pollutants encountered indoors. To provide the allergists with necessary information that will assist them in making useful recommendations to patients seeking advice regarding indoor environmental triggers beyond traditional perennial allergens. Review of the literature pertaining to indoor exposure and health effects of gaseous and particular matter. Indoor pollutants act as respiratory irritants, toxicants, and adjuvants or carriers of allergens. The allergist should be prepared to evaluate patient exposure to allergic and nonallergic triggers and understand how outdoor air pollution is affecting indoor environments. This requires being familiar with methodologies for monitoring and interpreting indoor air quality and interpreting results in the context of the patients exposure history and advising patients about rational environmental control interventions.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                03 April 2020
                April 2020
                : 17
                : 7
                : 2433
                Affiliations
                [1 ]Environmental Health Department, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02215, USA; b.alahmad@ 123456g.harvard.edu (B.A.); cmkang@ 123456hsph.harvard.edu (C.-M.K.); petros@ 123456hsph.harvard.edu (P.K.)
                [2 ]Environmental and Occupational Health Department, Faculty of Public Health, Kuwait University, 12037 Kuwait City, Kuwait
                [3 ]Environmental Lab, Hawalli, Al-Rehab Complex, 36141 Kuwait City, Kuwait; kuwait@ 123456environmentallab.net (F.A.-M.); venkatk@ 123456environmentallab.net (V.K.)
                [4 ]President, Gulf University for Science and Technology (GUST), 32093 Kuwait City, Kuwait; bouhamraw@ 123456yahoo.com
                Author notes
                Author information
                https://orcid.org/0000-0002-2042-1174
                Article
                ijerph-17-02433
                10.3390/ijerph17072433
                7178282
                32260094
                ee843bf0-c03f-4336-8fad-00c1b6845693
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 February 2020
                : 31 March 2020
                Categories
                Article

                Public health
                indoor air quality,kuwait,particle penetration,dust storms,exposure assessment,indoor to outdoor ratio

                Comments

                Comment on this article