28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Upregulation of HYAL1 Expression in Breast Cancer Promoted Tumor Cell Proliferation, Migration, Invasion and Angiogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyaluronic acid (HA) is a component of the Extra-cellular matrix (ECM), it is closely correlated with tumor cell growth, proliferation, metastasis and angiogenesis, etc. Hyaluronidase (HAase) is a HA-degrading endoglycosidase, levels of HAase are elevated in many cancers. Hyaluronidase-1 (HYAL1) is the major tumor-derived HAase. We previously demonstrated that HYAL1 were overexpression in human breast cancer. Breast cancer cells with higher HAase expression, exhibited significantly higher invasion ability through matrigel than those cells with lower HAase expression, and knockdown of HYAL1 expression in breast cancer cells resulted in decreased cell growth, adhesion, invasion and angiogenesis. Here, to further elucidate the function of HYAL1 in breast cancer, we investigated the consequences of forcing HYAL1 expression in breast cancer cells by transfection of expression plasmid. Compared with control, HYAL1 up-regulated cells showed increased the HAase activity, and reduced the expression of HA in vitro. Meantime, upregulation of HYAL1 promoted the cell growth, migration, invasion and angiogenesis in vitro. Moreover, in nude mice model, forcing HYAL1 expression induced breast cancer cell xenograft tumor growth and angiogenesis. Interestingly, the HA expression was upregulated by forcing HYAL1 expression in vivo. These findings suggested that HYAL1-HA system is correlated with the malignant behavior of breast cancer.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Hyaluronan.

          Hyaluronan (hyaluronic acid) is a high-molecular-mass polysaccharide found in the extracellular matrix, especially of soft connective tissues. It is synthesized in the plasma membrane of fibroblasts and other cells by addition of sugars to the reducing end of the polymer, whereas the nonreducing end protrudes into the pericellular space. The polysaccharide is catabolized locally or carried by lymph to lymph nodes or the general circulation, from where it is cleared by the endothelial cells of the liver sinusoids. The overall turnover rate is surprisingly rapid for a connective tissue matrix component (t1/2 0.5 to a few days). Hyaluronan has been assigned various physiological functions in the intercellular matrix, e.g., in water and plasma protein homeostasis. Hyaluronan production increases in proliferating cells and the polymer may play a role in mitosis. Extensive hyaluronidase-sensitive coats have been identified around mesenchymal cells. They are either anchored firmly in the plasma membrane or bound via hyaluronan-specific binding proteins (receptors). Such receptors have now been identified on many different cells, e.g., the lymphocyte homing receptor CD 44. Interaction between a hyaluronan receptor and extracellular polysaccharide has been connected with locomotion and cell migration. Hyaluronan seems to play an important role during development and differentiation and has other cell regulatory activities. Hyaluronan has also been recognized in clinical medicine. A concentrated solution of hyaluronan (10 mg/ml) has, through its tissue protective and rheological properties, become a device in ophthalmic surgery. Analysis of serum hyaluronan is promising in the diagnosis of liver disease and various inflammatory conditions, e.g., rheumatoid arthritis. Interstitial edema caused by accumulation of hyaluronan may cause dysfunction in various organs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiogenesis induced by degradation products of hyaluronic acid.

            Partial degradation products of sodium hyaluronate produced by the action of testicular hyaluronidase induced an angiogenic response (formation of new blood vessels) on the chick chorioallantoic membrane. Neither macromolecular hyaluronate nor exhaustively digested material had any angiogenic potential. Fractionation of the digestion products established that the activity was restricted to hyaluronate fragments between 4 and 25 disaccharides in length.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The six hyaluronidase-like genes in the human and mouse genomes.

              The human genome contains six hyaluronidase-like genes. Three genes (HYAL1, HYAL2 and HYAL3) are clustered on chromosome 3p21.3, and another two genes (HYAL4 and PH-20/SPAM1) and one expressed pseudogene (HYALP1) are similarly clustered on chromosome 7q31.3. The extensive homology between the different hyaluronidase genes suggests ancient gene duplication, followed by en masse block duplication, events that occurred before the emergence of modern mammals. Very recently we have found that the mouse genome also has six hyaluronidase-like genes that are also grouped into two clusters of three, in regions syntenic with the human genome. Surprisingly, the mouse ortholog of HYALP1 does not contain any mutations, and unlike its human counterpart may actually encode an active enzyme. Hyal-1 is the only hyaluronidase in mammalian plasma and urine, and is also found at high levels in major organs such as liver, kidney, spleen, and heart. A model is proposed suggesting that Hyal-2 and Hyal-1 are the major mammalian hyaluronidases in somatic tissues, and that they act in concert to degrade high molecular weight hyaluronan to the tetrasaccharide. Twenty-kDa hyaluronan fragments are generated at the cell surface in unique endocytic vesicles resulting from digestion by the glycosylphosphatidyl-inositol-anchored Hyal-2, transported intracellularly by an unknown process, and then further digested by Hyal-1. The two beta-exoglycosidases, beta-glucuronidase and beta-N-acetyl glucosaminidase, remove sugars from reducing termini of hyaluronan oligomers, and supplement the hyaluronidases in the catabolism of hyaluronan.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                28 July 2011
                : 6
                : 7
                : e22836
                Affiliations
                [1 ]Department of Endocrine and Breast Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
                [2 ]Molecular Oncology and Epigenetics Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
                [3 ]Department of Anaesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China
                [4 ]Department of General Surgery, the First Hospital of Jiulongpo District, Chongqing, China
                Faculdade de Medicina, Universidade de São Paulo, Brazil
                Author notes

                Conceived and designed the experiments: JXT GSR. Performed the experiments: JXT XYW XLS HYL YS LW. Analyzed the data: JXT XYW XLS HYL GSR. Contributed reagents/materials/analysis tools: JXT XYW YS LW. Wrote the paper: JXT GSR.

                Article
                PONE-D-11-03079
                10.1371/journal.pone.0022836
                3145763
                21829529
                ee9130fb-664a-465f-8937-499a067cd1d1
                Tan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 February 2011
                : 29 June 2011
                Page count
                Pages: 9
                Categories
                Research Article
                Medicine
                Oncology
                Basic Cancer Research
                Tumor Physiology
                Oncology Agents

                Uncategorized
                Uncategorized

                Comments

                Comment on this article