47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypothalamic ERK Mediates the Anorectic and Thermogenic Sympathetic Effects of Leptin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE—Leptin is an adipocyte hormone that plays a major role in energy balance. Leptin receptors in the hypothalamus are known to signal via distinct mechanisms, including signal transducer and activator of transcription-3 (STAT3) and phosphoinositol-3 kinase (PI 3-kinase). Here, we tested the hypothesis that extracellular signal–regulated kinase (ERK) is mediating leptin action in the hypothalamus.

          RESEARCH DESIGN AND METHODS—Biochemical, pharmacological, and physiological approaches were combined to characterize leptin activation of ERK in the hypothalamus in rats.

          RESULTS—Leptin activates ERK1/2 in a receptor-mediated manner that involves JAK2. Leptin-induced ERK1/2 activation was restricted to the hypothalamic arcuate nucleus. Pharmacological blockade of hypothalamic ERK1/2 reverses the anorectic and weight-reducing effects of leptin. The pharmacological antagonists of ERK1/2 did not attenuate leptin-induced activation of STAT3 or PI 3-kinase. Blockade of ERK1/2 abolishes leptin-induced increases in sympathetic nerve traffic to thermogenic brown adipose tissue (BAT) but does not alter the stimulatory effects of leptin on sympathetic nerve activity to kidney, hindlimb, or adrenal gland. In contrast, blockade of PI 3-kinase prevents leptin-induced sympathetic activation to kidney but not to BAT, hindlimb, or adrenal gland.

          CONCLUSIONS—Our findings indicate that hypothalamic ERK plays a key role in the control of food intake, body weight, and thermogenic sympathetic outflow by leptin but does not participate in the cardiovascular and renal sympathetic actions of leptin.

          Related collections

          Most cited references 73

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rapid planetesimal formation in turbulent circumstellar discs

          The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are augmented a further order of magnitude by a streaming instability (Youdin & Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar discs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Dicke Quantum Phase Transition with a Superfluid Gas in an Optical Cavity

            A phase transition describes the sudden change of state in a physical system, such as the transition between a fluid and a solid. Quantum gases provide the opportunity to establish a direct link between experiment and generic models which capture the underlying physics. A fundamental concept to describe the collective matter-light interaction is the Dicke model which has been predicted to show an intriguing quantum phase transition. Here we realize the Dicke quantum phase transition in an open system formed by a Bose-Einstein condensate coupled to an optical cavity, and observe the emergence of a self-organized supersolid phase. The phase transition is driven by infinitely long-ranged interactions between the condensed atoms. These are induced by two-photon processes involving the cavity mode and a pump field. We show that the phase transition is described by the Dicke Hamiltonian, including counter-rotating coupling terms, and that the supersolid phase is associated with a spontaneously broken spatial symmetry. The boundary of the phase transition is mapped out in quantitative agreement with the Dicke model. The work opens the field of quantum gases with long-ranged interactions, and provides access to novel quantum phases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Specificity and mechanism of action of some commonly used protein kinase inhibitors.

              The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                March 2009
                : 58
                : 3
                : 536-542
                Affiliations
                [1 ]Center on Functional Genomics of Hypertension, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
                [2 ]Cardiovascular Research Center, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
                Author notes

                Corresponding author: Kamal Rahmouni, kamal-rahmouni@ 123456uiowa.edu

                Article
                583536
                10.2337/db08-0822
                2646051
                19066310
                Copyright © 2009, American Diabetes Association

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                Product
                Categories
                Metabolism

                Endocrinology & Diabetes

                Comments

                Comment on this article