45
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Inflammatory Cytokines in Heart Failure: Mediators and Markers

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evidence from both experimental and clinical trials indicates that inflammatory mediators are of importance in the pathogenesis of chronic heart failure (HF) contributing to cardiac remodeling and peripheral vascular disturbances. Several studies have shown raised levels of inflammatory cytokines such as tumor necrosis factor (TNF)α, interleukin (IL)-1β and IL-6 in HF patients in plasma and circulating leukocytes, as well as in the failing myocardium itself. There is strong evidence that these mediators are involved in processes leading to cardiac remodeling such as hypertrophy, fibrosis and apoptosis. Some of these cytokines can also give useful prognostic information as reliable biomarkers in this disorder. In general, immunomodulating treatments have, with a few exceptions, been neutral or even harmful. However, the negative results of anti-TNF studies, for instance, do not necessarily argue against the ‘cytokine hypothesis’. These studies just underscore the challenges in developing treatment modalities that can modulate the cytokine network in HF patients and result in beneficial net effects. Future studies should identify the crucial actors and their mechanisms of action in the immunopathogenesis of chronic HF and, in particular, clarify the balance between adaptive and maladaptive effects of these molecules. Such studies are a prerequisite for the development of new treatment strategies that target inflammatory and immunopathogenic mechanisms in HF. In this review article, these issues are thoroughly discussed, and we also argue for the possibility of future therapeutic targets such as mediators in innate immunity, chemokines and mediators in matrix remodeling.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoporosis: now and the future.

          Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic effect of osteoporosis, particularly postmenopausal osteoporosis, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Novel treatment strategies have been developed that aim to inhibit excessive bone resorption and increase bone formation. The most promising novel treatments include: denosumab, a monoclonal antibody for receptor activator of NF-κB ligand, a key osteoclast cytokine; odanacatib, a specific inhibitor of the osteoclast protease cathepsin K; and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This overview discusses these novel therapies and explains their underlying physiology. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The inflammasomes: guardians of the body.

            The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making sense of latent TGFbeta activation.

              TGFbeta is secreted as part of a latent complex that is targeted to the extracellular matrix. A variety of molecules, 'TGFbeta activators,' release TGFbeta from its latent state. The unusual temporal discontinuity of TGFbeta synthesis and action and the panoply of TGFbeta effects contribute to the interest in TGF-beta. However, the logical connections between TGFbeta synthesis, storage and action are obscure. We consider the latent TGFbeta complex as an extracellular sensor in which the TGFbeta propeptide functions as the detector, latent-TGFbeta-binding protein (LTBP) functions as the localizer, and TGF-beta functions as the effector. Such a view provides a logical continuity for various aspects of TGFbeta biology and allows us to appreciate TGFbeta biology from a new perspective.
                Bookmark

                Author and article information

                Journal
                CRD
                Cardiology
                10.1159/issn.0008-6312
                Cardiology
                S. Karger AG
                0008-6312
                1421-9751
                2012
                June 2012
                12 June 2012
                : 122
                : 1
                : 23-35
                Affiliations
                aDepartment of Cardiology, bResearch Institute for Internal Medicine, cSection of Endocrinology, and dSection of Clinical Immunology and Infectious Diseases, Oslo University Hospital, and eFaculty of Medicine, University of Oslo, Oslo, Norway
                Author notes
                *Lars Gullestad, MD, PhD, Department of Cardiology, Oslo University Hospital, Rikshospitalet, NO–0027 Oslo (Norway), Tel. +47 23 070 000, E-Mail lars.gullestad@medisin.uio.no
                Article
                338166 Cardiology 2012;122:23–35
                10.1159/000338166
                22699305
                eea2103c-1b63-45aa-bb03-b01f2dabb203
                © 2012 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 27 January 2012
                : 09 March 2012
                Page count
                Tables: 2, Pages: 13
                Categories
                Turning Basic Research into Clinical Success

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Chronic heart failure,Inflammatory mediators,Cardiac remodeling,Immunomodulating treatment,Markers

                Comments

                Comment on this article