16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      SMAD4 promotes TGF-β–independent NK cell homeostasis and maturation and antitumor immunity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SMAD4 is the only common SMAD in TGF-β signaling that usually impedes immune cell activation in the tumor microenvironment. However, we demonstrated here that selective deletion of Smad4 in NK cells actually led to dramatically reduced tumor cell rejection and augmented tumor cell metastases, reduced murine CMV clearance, as well as impeded NK cell homeostasis and maturation. This was associated with a downregulation of granzyme B (Gzmb), Kit, and Prdm1 in Smad4-deficient NK cells. We further unveiled the mechanism by which SMAD4 promotes Gzmb expression. Gzmb was identified as a direct target of a transcriptional complex formed by SMAD4 and JUNB. A JUNB binding site distinct from that for SMAD4 in the proximal Gzmb promoter was required for transcriptional activation by the SMAD4-JUNB complex. In a Tgfbr2 and Smad4 NK cell-specific double-conditional KO model, SMAD4-mediated events were found to be independent of canonical TGF-β signaling. Our study identifies and mechanistically characterizes unusual functions and pathways for SMAD4 in governing innate immune responses to cancer and viral infection, as well as NK cell development.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: not found
          • Article: not found

          AP-1: a double-edged sword in tumorigenesis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunological aspects of cancer chemotherapy.

            Accumulating evidence indicates that the innate and adaptive immune systems make a crucial contribution to the antitumour effects of conventional chemotherapy-based and radiotherapy-based cancer treatments. Moreover, the molecular and cellular bases of the immunogenicity of cell death that is induced by cytotoxic agents are being progressively unravelled, challenging the guidelines that currently govern the development of anticancer drugs. Here, we review the immunological aspects of conventional cancer treatments and propose that future successes in the fight against cancer will rely on the development and clinical application of combined chemo- and immunotherapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy.

              Metazoan organisms may discriminate between self and non-self not only by the presence of foreign antigens but also by the absence of normal self markers. Mammalian adaptive immune responses use the first strategy, with the additional requirement that foreign antigens are recognized in the context of self-major histocompatibility complex (MHC) products at the cell surface. Aberrant cells which fail to express MHC products adequately can therefore avoid detection. A more primitive but complementary defence system, eliminating such cells on the basis of absent self-markers, is suggested by a re-interpretation of phenomena associated with metastasis and natural resistance. We now show that murine lymphoma cells selected for loss of H-2 expression are less malignant after low-dose inoculation in syngeneic hosts than are wild-type cells, and that the rejection of such cells is non-adaptive. On the basis of our data, we suggest that natural killer cells are effector cells in a defence system geared to detect the deleted or reduced expression of self-MHC.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                September 24 2018
                September 24 2018
                November 1 2018
                October 15 2018
                October 15 2018
                November 1 2018
                : 128
                : 11
                : 5123-5136
                Article
                10.1172/JCI121227
                6205382
                30183689
                eea9fbf0-f5a5-489a-936f-5c14b90ad3de
                © 2018
                History

                Comments

                Comment on this article