147
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Campylobacter jejuni Isolates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Campylobacter jejuni is currently the leading cause of bacterial gastroenteritis in humans. Comparison of multiple Campylobacter strains revealed a high genetic and phenotypic diversity. However, little is known about differences in transcriptome organization, gene expression, and small RNA (sRNA) repertoires. Here we present the first comparative primary transcriptome analysis based on the differential RNA–seq (dRNA–seq) of four C. jejuni isolates. Our approach includes a novel, generic method for the automated annotation of transcriptional start sites (TSS), which allowed us to provide genome-wide promoter maps in the analyzed strains. These global TSS maps are refined through the integration of a SuperGenome approach that allows for a comparative TSS annotation by mapping RNA–seq data of multiple strains into a common coordinate system derived from a whole-genome alignment. Considering the steadily increasing amount of RNA–seq studies, our automated TSS annotation will not only facilitate transcriptome annotation for a wider range of pro- and eukaryotes but can also be adapted for the analysis among different growth or stress conditions. Our comparative dRNA–seq analysis revealed conservation of most TSS, but also single-nucleotide-polymorphisms (SNP) in promoter regions, which lead to strain-specific transcriptional output. Furthermore, we identified strain-specific sRNA repertoires that could contribute to differential gene regulation among strains. In addition, we identified a novel minimal CRISPR-system in Campylobacter of the type-II CRISPR subtype, which relies on the host factor RNase III and a trans-encoded sRNA for maturation of crRNAs. This minimal system of Campylobacter, which seems active in only some strains, employs a unique maturation pathway, since the crRNAs are transcribed from individual promoters in the upstream repeats and thereby minimize the requirements for the maturation machinery. Overall, our study provides new insights into strain-specific transcriptome organization and sRNAs, and reveals genes that could modulate phenotypic variation among strains despite high conservation at the DNA level.

          Author Summary

          Many species have evolved into diverse strains with phenotypic and genotypic variations that facilitate adaptation to different ecological niches and, in the case of pathogens, to different hosts. Whereas comparison of genome sequences reveals differences and similarities among strains, the consequences of genomic variations can be tracked by studying the functional output from the genome. RNA sequencing has been revolutionizing transcriptome analyses of both pro- and eukaryotes. However, the bioinformatics-based analysis is still lagging behind, and transcriptome features are often manually annotated, which is laborious and time-consuming. This is even more compounded for the analyses of multiple strains. Here we compared the primary transcriptomes of four isolates of Campylobacter jejuni, the leading cause of bacterial gastroenteritis in humans, and provide genome-wide transcriptional start site (TSS) maps using a novel automated annotation method. Our comparative RNA–seq showed that most TSS are conserved in multiple strains, but we also observed SNP–dependent promoter usage. Furthermore, we identified a novel minimal RNA–based CRISPR immune system as well as strain-specific small RNA repertoires. Our automated, comparative TSS annotation will facilitate and improve transcriptome annotation for a wider range of organisms and provides insights into the contribution of transcriptome differences to phenotypic variation among closely related species.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.

          Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences.

            Campylobacter jejuni, from the delta-epsilon group of proteobacteria, is a microaerophilic, Gram-negative, flagellate, spiral bacterium-properties it shares with the related gastric pathogen Helicobacter pylori. It is the leading cause of bacterial food-borne diarrhoeal disease throughout the world. In addition, infection with C. jejuni is the most frequent antecedent to a form of neuromuscular paralysis known as Guillain-Barré syndrome. Here we report the genome sequence of C. jejuni NCTC11168. C. jejuni has a circular chromosome of 1,641,481 base pairs (30.6% G+C) which is predicted to encode 1,654 proteins and 54 stable RNA species. The genome is unusual in that there are virtually no insertion sequences or phage-associated sequences and very few repeat sequences. One of the most striking findings in the genome was the presence of hypervariable sequences. These short homopolymeric runs of nucleotides were commonly found in genes encoding the biosynthesis or modification of surface structures, or in closely linked genes of unknown function. The apparently high rate of variation of these homopolymeric tracts may be important in the survival strategy of C. jejuni.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Campylobacter jejuni: molecular biology and pathogenesis.

              Campylobacter jejuni is a foodborne bacterial pathogen that is common in the developed world. However, we know less about its biology and pathogenicity than we do about other less prevalent pathogens. Interest in C. jejuni has increased in recent years as a result of the growing appreciation of its importance as a pathogen and the availability of new model systems and genetic and genomic technologies. C. jejuni establishes persistent, benign infections in chickens and is rapidly cleared by many strains of laboratory mouse, but causes significant inflammation and enteritis in humans. Comparing the different host responses to C. jejuni colonization should increase our understanding of this organism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                May 2013
                May 2013
                16 May 2013
                : 9
                : 5
                : e1003495
                Affiliations
                [1 ]Research Center for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
                [2 ]Integrative Transcriptomics, ZBIT (Center for Bioinformatics Tübingen), University of Tübingen, Tübingen, Germany
                [3 ]Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
                [4 ]Max Planck Genome Centre Cologne, Cologne, Germany
                Uppsala University, Sweden
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CMS KN. Performed the experiments: GD AH KUF NH KN RR CMS. Analyzed the data: GD AH KUF KN CMS. Contributed reagents/materials/analysis tools: RR KN AH. Wrote the paper: CMS.

                Article
                PGENETICS-D-13-00603
                10.1371/journal.pgen.1003495
                3656092
                23696746
                eec36f51-d6af-44fc-b1a8-851fe005f10f
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 March 2013
                : 20 March 2013
                Page count
                Pages: 15
                Funding
                GD is supported by the Graduate School for Life Sciences (GSLS), Würzburg, and AH by the DFG Priority Program 1335 “Scalable Visual Analytics.” CMS supported by the ZINF Young Investigator program at the Research Center for Infectious Diseases (ZINF) in Würzburg, Germany, the Bavarian Research Network for Molecular Biosystems (BioSysNet), and the Daimler and Benz Foundation. This publication was funded by the German Research Foundation (DFG) and the University of Würzburg in the funding programme “Open Access Publishing.” The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Analysis Tools
                Transcriptomes
                Comparative Genomics
                Functional Genomics
                Molecular Genetics
                Gene Identification and Analysis
                Gene Regulation
                Gene Expression
                Biological Data Management
                Regulatory Networks
                Sequence Analysis
                Evolutionary Biology
                Comparative Genomics
                Genetics
                Gene Expression
                RNA processing
                Gene Function
                Genomics
                Functional Genomics
                Microbiology
                Bacteriology
                Bacterial Evolution
                Bacterial Pathogens
                Emerging Infectious Diseases
                Microbial Pathogens
                Pathogenesis
                Molecular Cell Biology
                Nucleic Acids
                RNA

                Genetics
                Genetics

                Comments

                Comment on this article