Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Preconditioning with 1,25-Dihydroxyvitamin D 3 Protects against Subsequent Ischemia-Reperfusion Injury in the Rat Kidney

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aim: Induction of heat shock protein 70 (HSP70) is important in the tolerance of subsequent ischemia-reperfusion (I/R) injury. The aim of this study was to evaluate the effect of HSP70 induction by 1,25-dihydroxyvitamin D<sub>3</sub> (VD3) on subsequent I/R injury in rats. Methods: HSP70 was induced in Sprague-Dawley rats by VD3 treatment for 7 days, and the effect of VD3 pretreatment on subsequent I/R injury was evaluated in terms of renal function, tubular necrosis score, tumor necrosis factor alpha mRNA expression, mitogen-activated protein kinase expression, and proliferating cell nuclear antigen expression. Results: VD3 treatment increased HSP70 expression which was localized to renal tubular cells in the outer medulla. Pretreatment with VD3 before I/R injury resulted in (1) decreased blood urea nitrogen and serum creatinine levels; (2) decreased tubular cell necrosis; (3) increased tubular cell proliferation as determined by proliferating cell nuclear antigen expression; (4) decreased tumor necrosis factor alpha mRNA expression, and (5) increased extracellular signal regulated protein kinase and decreased c-Jun N-terminal kinase expression. Conclusion: Our study demonstrates that VD3 is a nontoxic inducer of HSP70 and exerts a protective effect against subsequent I/R injury.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: not found
          • Article: not found

          Molecular chaperone functions of heat-shock proteins.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of 1,25 (OH)2 vitamin D3 on glomerulosclerosis in subtotally nephrectomized rats.

            In the past, there has been considerable concern that treatment with active vitamin D might accelerate progression independent of hypercalcemia and hypercalcuria. Nevertheless, 1,25(OH)2D3 has known antiproliferative properties and has also been shown to inhibit renal growth. Since glomerular growth is a permissive factor for the development of glomerulosclerosis, we reasoned that 1,25(OH)2D3 might even attenuate progression. To test this working hypothesis we performed two experiments of 8 and 16 weeks duration, respectively, to compare subtotally nephrectomized (SNX) rats treated with ethanol and SNX treated with 1,25(OH)2D3. Control animals were sham operated and pair-fed with SNX animals. 1,25(OH)2D3 (3 ng/100 g body wt/day) was administered by osmotic minipump. 1,25(OH)2D3 had no significant effect on systolic blood pressure and only a transient effect on weight gain. SNX reduced the number of glomeruli (left kidney) from an average of 3.3 x 10(4) to 1.2 x 10(4) per kidney. Mean glomerular volume was 3.87 +/- 0.71 x 10(6) microns 3 in sham operated animals and significantly (P < 0.05) higher (10.1 +/- 1.75 x 10(6) microns 3) in untreated animals 16 weeks after SNX. Glomerular volume was significantly (P < 0.05) less in 1,25(OH)2D3 treated SNX [10.1 +/- 1.75 in ethanol vs. 7.04 +/- 1.78 in 1,25(OH)2D3 treated SNX]. In parallel, there was significantly (P < 0.01) less glomerulosclerosis [glomerulosclerosis index 1.16 +/- 0.14 in the ethanol treated SNX vs. 0.80 +/- 0.16 in SNX treated with 1,25(OH)2D3] in the eight week experiment. Albuminuria was significantly (P < 0.01) lower in 1,25(OH)2D3 treated than in ethanol treated SNX (mean 0.785 mg/24 hr, range 0.43 to 1.80, vs. 3.75 mg/24 hr, 1.29 to 14.2). The morphological data were directionally analogous in a second 16 week experiment. Only slight changes of the vascular sclerosis index and tubulointerstitial index were seen in SNX and were not affected by 1,25(OH)2D3 further. To prove that the effect of 1,25(OH)2D3 was independent of PTH, parathyreoidectomized SNX rats without or with 1,25(OH)2D3 treatment were examined seven days post-SNX. PCNA staining showed suppression of cell proliferation. Furthermore, in situ hybridization for transforming growth factor-B (TGF-beta) showed less vascular and tubular expression in 1,25(OH)2D3 treated rats. We conclude that 1,25(OH)2D3 has antiproliferative actions during the compensatory growth of nephrons in response to subtotal nephrectomy. These effects are independent of PTH. The data document that 1,25(OH)2D3 reduces renal cell proliferation and glomerular growth as well as glomerulosclerosis and albuminuria as indicators of progressive glomerular damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment.

              MAPK activities, including JNK, p38, and ERK, are markedly enhanced after ischemia in vivo and chemical anoxia in vitro. The relative extent of JNK, p38, or ERK activation has been proposed to determine cell fate after injury. A mouse model was established in which prior exposure to ischemia protected against a second ischemic insult imposed 8 or 15 days later. In contrast to what was observed after 30 min of bilateral ischemia, when a second period of ischemia of 30- or 35-min duration was imposed 8 days later, there was no subsequent increase in plasma creatinine, decrease in glomerular filtration rate, or increase in fractional excretion of sodium. A shorter period of prior ischemia (15 min) was partially protective against subsequent ischemic injury 8 days later. Unilateral ischemia was also protective against a subsequent ischemic insult to the same kidney, revealing that systemic uremia is not necessary for protection. The ischemia-related activation of JNK and p38 and outer medullary vascular congestion were markedly mitigated by prior exposure to ischemia, whereas preconditioning had no effect on post-ischemic activation of ERK1/2. The phosphorylation of MKK7, MKK4, and MKK3/6, upstream activators of JNK and p38, was markedly reduced by ischemic preconditioning, whereas the post-ischemic phosphorylation of MEK1/2, the upstream activator of ERK1/2, was unaffected by preconditioning. Pre- and post-ischemic HSP-25 levels were much higher in the preconditioned kidney. In summary, post-ischemic JNK and p38 (but not ERK1/2) activation was markedly reduced in a model of kidney ischemic preconditioning that was established in the mouse. The reduction in JNK and p38 activation can be accounted for by reduced activation of upstream MAPK kinases. The post-ischemic activation patterns of MAPKs may explain the remarkable protection against ischemic injury observed in this model.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2005
                June 2005
                18 March 2005
                : 100
                : 2
                : e85-e94
                Affiliations
                Departments of aInternal Medicine and bAnatomy, The Catholic University of Korea College of Medicine, Seoul, Korea; cNephrology and Dialysis Unit, Affiliated Hospital, Yan Bian University Medical College, Jilin, China
                Article
                84574 Nephron Exp Nephrol 2005;100:e85–e94
                10.1159/000084574
                15775722
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 8, References: 35, Pages: 1
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/84574
                Categories
                Original Paper

                Comments

                Comment on this article